Generalization Properties of NAS under Activation and Skip Connection
Search
- URL: http://arxiv.org/abs/2209.07238v4
- Date: Wed, 1 Nov 2023 13:34:51 GMT
- Title: Generalization Properties of NAS under Activation and Skip Connection
Search
- Authors: Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, Volkan Cevher
- Abstract summary: We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
- Score: 66.8386847112332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Architecture Search (NAS) has fostered the automatic discovery of
state-of-the-art neural architectures. Despite the progress achieved with NAS,
so far there is little attention to theoretical guarantees on NAS. In this
work, we study the generalization properties of NAS under a unifying framework
enabling (deep) layer skip connection search and activation function search. To
this end, we derive the lower (and upper) bounds of the minimum eigenvalue of
the Neural Tangent Kernel (NTK) under the (in)finite-width regime using a
certain search space including mixed activation functions, fully connected, and
residual neural networks. We use the minimum eigenvalue to establish
generalization error bounds of NAS in the stochastic gradient descent training.
Importantly, we theoretically and experimentally show how the derived results
can guide NAS to select the top-performing architectures, even in the case
without training, leading to a train-free algorithm based on our theory.
Accordingly, our numerical validation shed light on the design of
computationally efficient methods for NAS. Our analysis is non-trivial due to
the coupling of various architectures and activation functions under the
unifying framework and has its own interest in providing the lower bound of the
minimum eigenvalue of NTK in deep learning theory.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
We propose a novel approach for zero-shot Neural Architecture Search (NAS) using deep learning.
Our method employs Fourier sum of sines encoding for convolutional kernels, enabling the construction of a computational feed-forward graph with a structure similar to the architecture under evaluation.
Experimental results show that our approach surpasses previous methods using graph convolutional networks in terms of correlation on the NAS-Bench-201 dataset and exhibits a higher convergence rate.
arXiv Detail & Related papers (2023-08-31T14:54:06Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - Towards Self-supervised and Weight-preserving Neural Architecture Search [38.497608743382145]
We propose the self-supervised and weight-preserving neural architecture search (SSWP-NAS) as an extension of the current NAS framework.
Experiments show that the architectures searched by the proposed framework achieve state-of-the-art accuracy on CIFAR-10, CIFAR-100, and ImageNet datasets.
arXiv Detail & Related papers (2022-06-08T18:48:05Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
This work targets designing a principled and unified training-free framework for Neural Architecture Search (NAS)
NAS has been explosively studied to automate the discovery of top-performer neural networks, but suffers from heavy resource consumption and often incurs search bias due to truncated training or approximations.
We present a unified framework to understand and accelerate NAS, by disentangling "TEG" characteristics of searched networks.
arXiv Detail & Related papers (2021-08-26T17:52:07Z) - Generic Neural Architecture Search via Regression [27.78105839644199]
We propose a novel and generic neural architecture search (NAS) framework, termed Generic NAS (GenNAS)
GenNAS does not use task-specific labels but instead adopts textitregression on a set of manually designed synthetic signal bases for architecture evaluation.
We then propose an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels.
arXiv Detail & Related papers (2021-08-04T08:21:12Z) - Pretraining Neural Architecture Search Controllers with Locality-based
Self-Supervised Learning [0.0]
We propose a pretraining scheme that can be applied to controller-based NAS.
Our method, locality-based self-supervised classification task, leverages the structural similarity of network architectures to obtain good architecture representations.
arXiv Detail & Related papers (2021-03-15T06:30:36Z) - Neural Architecture Search on ImageNet in Four GPU Hours: A
Theoretically Inspired Perspective [88.39981851247727]
We propose a novel framework called training-free neural architecture search (TE-NAS)
TE-NAS ranks architectures by analyzing the spectrum of the neural tangent kernel (NTK) and the number of linear regions in the input space.
We show that: (1) these two measurements imply the trainability and expressivity of a neural network; (2) they strongly correlate with the network's test accuracy.
arXiv Detail & Related papers (2021-02-23T07:50:44Z) - AdvantageNAS: Efficient Neural Architecture Search with Credit
Assignment [23.988393741948485]
We propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS.
AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates.
Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget.
arXiv Detail & Related papers (2020-12-11T05:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.