RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection
- URL: http://arxiv.org/abs/2503.22733v2
- Date: Tue, 08 Apr 2025 04:25:57 GMT
- Title: RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection
- Authors: Tomomasa Yamasaki, Zhehui Wang, Tao Luo, Niangjun Chen, Bo Wang,
- Abstract summary: We present RBFleX-NAS, a novel training-free NAS framework that accounts for both activation outputs and input features of the last layer.<n>RBFleX-NAS significantly outperforms state-of-the-art training-free NAS methods in terms of top-1 accuracy.<n>We also propose NAFBee, a new activation design space that extends the activation type to encompass various commonly used functions.
- Score: 4.559021500490186
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural Architecture Search (NAS) is an automated technique to design optimal neural network architectures for a specific workload. Conventionally, evaluating candidate networks in NAS involves extensive training, which requires significant time and computational resources. To address this, training-free NAS has been proposed to expedite network evaluation with minimal search time. However, state-of-the-art training-free NAS algorithms struggle to precisely distinguish well-performing networks from poorly-performing networks, resulting in inaccurate performance predictions and consequently sub-optimal top-1 network accuracy. Moreover, they are less effective in activation function exploration. To tackle the challenges, this paper proposes RBFleX-NAS, a novel training-free NAS framework that accounts for both activation outputs and input features of the last layer with a Radial Basis Function (RBF) kernel. We also present a detection algorithm to identify optimal hyperparameters using the obtained activation outputs and input feature maps. We verify the efficacy of RBFleX-NAS over a variety of NAS benchmarks. RBFleX-NAS significantly outperforms state-of-the-art training-free NAS methods in terms of top-1 accuracy, achieving this with short search time in NAS-Bench-201 and NAS-Bench-SSS. In addition, it demonstrates higher Kendall correlation compared to layer-based training-free NAS algorithms. Furthermore, we propose NAFBee, a new activation design space that extends the activation type to encompass various commonly used functions. In this extended design space, RBFleX-NAS demonstrates its superiority by accurately identifying the best-performing network during activation function search, providing a significant advantage over other NAS algorithms.
Related papers
- Delta-NAS: Difference of Architecture Encoding for Predictor-based Evolutionary Neural Architecture Search [5.1331676121360985]
We craft an algorithm with the capability to perform fine-grain NAS at a low cost.
We propose projecting the problem to a lower dimensional space through predicting the difference in accuracy of a pair of similar networks.
arXiv Detail & Related papers (2024-11-21T02:43:32Z) - Robustifying and Boosting Training-Free Neural Architecture Search [49.828875134088904]
We propose a robustifying and boosting training-free NAS (RoBoT) algorithm to develop a robust and consistently better-performing metric on diverse tasks.
Remarkably, the expected performance of our RoBoT can be theoretically guaranteed, which improves over the existing training-free NAS.
arXiv Detail & Related papers (2024-03-12T12:24:11Z) - How Much Is Hidden in the NAS Benchmarks? Few-Shot Adaptation of a NAS
Predictor [22.87207410692821]
We borrow from the rich field of meta-learning for few-shot adaptation and study applicability of those methods to NAS.
Our meta-learning approach not only shows superior (or matching) performance in the cross-validation experiments but also successful extrapolation to a new search space and tasks.
arXiv Detail & Related papers (2023-11-30T10:51:46Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
arXiv Detail & Related papers (2022-09-15T12:11:41Z) - U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search [50.33956216274694]
optimizing resource utilization in target platforms is key to achieving high performance during DNN inference.
We propose a novel hardware-aware NAS framework that does not only optimize for task accuracy and inference latency, but also for resource utilization.
We achieve 2.8 - 4x speedup for DNN inference compared to prior hardware-aware NAS methods.
arXiv Detail & Related papers (2022-03-23T13:44:15Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
This work targets designing a principled and unified training-free framework for Neural Architecture Search (NAS)
NAS has been explosively studied to automate the discovery of top-performer neural networks, but suffers from heavy resource consumption and often incurs search bias due to truncated training or approximations.
We present a unified framework to understand and accelerate NAS, by disentangling "TEG" characteristics of searched networks.
arXiv Detail & Related papers (2021-08-26T17:52:07Z) - AdvantageNAS: Efficient Neural Architecture Search with Credit
Assignment [23.988393741948485]
We propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS.
AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates.
Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget.
arXiv Detail & Related papers (2020-12-11T05:45:03Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - BRP-NAS: Prediction-based NAS using GCNs [21.765796576990137]
BRP-NAS is an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN)
We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201.
We also release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.
arXiv Detail & Related papers (2020-07-16T21:58:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.