論文の概要: Does CLIP Know My Face?
- arxiv url: http://arxiv.org/abs/2209.07341v3
- Date: Tue, 30 May 2023 14:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 02:47:00.414581
- Title: Does CLIP Know My Face?
- Title(参考訳): CLIPは私の顔を知っていますか?
- Authors: Dominik Hintersdorf and Lukas Struppek and Manuel Brack and Felix
Friedrich and Patrick Schramowski and Kristian Kersting
- Abstract要約: マルチモーダルモデル,特にCLIPのような視覚言語モデルのプライバシを評価する新しい手法を提案する。
提案したIDIA攻撃(IDIA)は、同一人物の画像でモデルをクエリすることで、個人がトレーニングデータに含まれるかどうかを明らかにする。
我々の結果は、大規模モデルにおけるより強力なプライバシー保護の必要性を強調し、IDIAは、トレーニングに不正なデータの使用を証明し、プライバシー法を強制するために使用できることを示唆している。
- 参考スコア(独自算出の注目度): 15.957198667607006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of deep learning in various applications, privacy concerns
around the protection of training data has become a critical area of research.
Whereas prior studies have focused on privacy risks in single-modal models, we
introduce a novel method to assess privacy for multi-modal models, specifically
vision-language models like CLIP. The proposed Identity Inference Attack (IDIA)
reveals whether an individual was included in the training data by querying the
model with images of the same person. Letting the model choose from a wide
variety of possible text labels, the model reveals whether it recognizes the
person and, therefore, was used for training. Our large-scale experiments on
CLIP demonstrate that individuals used for training can be identified with very
high accuracy. We confirm that the model has learned to associate names with
depicted individuals, implying the existence of sensitive information that can
be extracted by adversaries. Our results highlight the need for stronger
privacy protection in large-scale models and suggest that IDIAs can be used to
prove the unauthorized use of data for training and to enforce privacy laws.
- Abstract(参考訳): さまざまなアプリケーションにおけるディープラーニングの台頭に伴い、トレーニングデータの保護に関するプライバシー上の懸念が研究の重要領域となっている。
従来の研究では,シングルモーダルモデルにおけるプライバシリスクに着目していたが,特にCLIPのような視覚言語モデルにおいて,マルチモーダルモデルのプライバシを評価する新たな手法を導入する。
提案したIDIA攻撃(IDIA)は、同一人物の画像でモデルをクエリすることで、個人がトレーニングデータに含まれるかどうかを明らかにする。
モデルにさまざまな可能なテキストラベルを選択させると、その人物を認識したかどうかが明らかになり、トレーニングに使用された。
CLIPの大規模実験では、トレーニングに使用する個人を極めて高い精度で識別できることを示した。
本モデルでは,表現された人物と名前を関連付けることを学び,敵から抽出できる繊細な情報の存在を示唆する。
我々の結果は、大規模モデルにおけるより強力なプライバシー保護の必要性を強調し、IDIAは、トレーニングに不正なデータの使用を証明し、プライバシー法を強制するために使用できることを示唆している。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Membership Inference Attacks and Privacy in Topic Modeling [3.503833571450681]
トレーニングデータのメンバーを確実に識別できるトピックモデルに対する攻撃を提案する。
本稿では,DP語彙選択を前処理ステップとして組み込んだプライベートトピックモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T12:43:42Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Can Language Models be Instructed to Protect Personal Information? [30.187731765653428]
シミュレーションシナリオにおいて、モデルが特定の個人情報のカテゴリを保護するように指示されたとき、プライバシ/ユーティリティトレードオフを評価するためのベンチマークであるPrivQAを紹介します。
我々は,テキストや画像入力による単純なジェイルブレイク手法により,敵が容易にこれらの保護を回避できることを見出した。
PrivQAは、プライバシー保護を改善した新しいモデルの開発と、これらの保護の敵意的な堅牢性をサポートする可能性があると考えています。
論文 参考訳(メタデータ) (2023-10-03T17:30:33Z) - Students Parrot Their Teachers: Membership Inference on Model
Distillation [54.392069096234074]
知識蒸留によるプライバシを,教師と学生のトレーニングセットの両方で研究する。
私たちの攻撃は、生徒セットと教師セットが類似している場合、または攻撃者が教師セットを毒できる場合、最強です。
論文 参考訳(メタデータ) (2023-03-06T19:16:23Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning(FL)は、分散環境で機械学習モデルをトレーニングするための設定である。
本稿では,訓練ラウンドの経験的プライバシを評価するために,強敵による慎重なサンプル作成手法であるCANIFEを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:30:16Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
我々は,記憶化という新たな視点からプライバシを調査することを提案する。
記憶のレンズを通して、以前デプロイされたMIAは、より高いプライバシーリスクを持つサンプルを特定する可能性が低いため、誤解を招く結果をもたらすことがわかった。
一般化ギャップとプライバシリークは, これまでの結果に比べて相関が低いことを示す。
論文 参考訳(メタデータ) (2022-08-17T13:02:17Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
トレーニングデータ内に、パーソナライズされたプライバシ保証の異なるMLモデルのトレーニングを支援する3つの新しい方法を提案する。
実験により, 個人化されたプライバシ手法は, 非個人化されたベースラインよりも高い精度のモデルが得られることがわかった。
論文 参考訳(メタデータ) (2022-02-21T20:16:27Z) - FaceLeaks: Inference Attacks against Transfer Learning Models via
Black-box Queries [2.7564955518050693]
教師モデルと直接対話することなく,個人情報を漏らしたり推測したりできるかどうかを検討する。
集約レベル情報から推測する新しい手法を提案する。
本研究は,情報漏洩が現実の状況で広く利用されている伝達学習フレームワークに対する真のプライバシー上の脅威であることを示す。
論文 参考訳(メタデータ) (2020-10-27T03:02:40Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。