論文の概要: Overhead-Free Blockage Detection and Precoding Through Physics-Based
Graph Neural Networks: LIDAR Data Meets Ray Tracing
- arxiv url: http://arxiv.org/abs/2209.07350v2
- Date: Mon, 22 May 2023 13:32:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 05:46:07.420105
- Title: Overhead-Free Blockage Detection and Precoding Through Physics-Based
Graph Neural Networks: LIDAR Data Meets Ray Tracing
- Title(参考訳): 物理ベースのグラフニューラルネットワークによるオーバーヘッドフリーブロック検出とプリコーディング:lidarデータによるレイトレーシング
- Authors: Matteo Nerini, Bruno Clerckx
- Abstract要約: 物理ベースグラフニューラルネットワーク(GNN)による光検出・測光(LIDAR)データの分類によりブロック検出を実現する
プリコーダ設計には、LIDARデータから得られた3D面にレイトレーシングを行うことにより、予備チャネル推定を行う。
数値シミュレーションにより、ブロック検出は95%精度で成功していることが示された。
- 参考スコア(独自算出の注目度): 58.73924499067486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this letter, we address blockage detection and precoder design for
multiple-input multiple-output (MIMO) links, without communication overhead
required. Blockage detection is achieved by classifying light detection and
ranging (LIDAR) data through a physics-based graph neural network (GNN). For
precoder design, a preliminary channel estimate is obtained by running ray
tracing on a 3D surface obtained from LIDAR data. This estimate is successively
refined and the precoder is designed accordingly. Numerical simulations show
that blockage detection is successful with 95% accuracy. Our digital precoding
achieves 90% of the capacity and analog precoding outperforms previous works
exploiting LIDAR for precoder design.
- Abstract(参考訳): 本稿では,マルチインプット多重出力(MIMO)リンクに対するブロック検出とプリコーダの設計に,通信オーバーヘッドを伴わずに対処する。
ブロック検出は、物理学ベースのグラフニューラルネットワーク(GNN)を介して、光検出と範囲(LIDAR)データを分類することで達成される。
プリコーダ設計には、LIDARデータから得られた3D面にレイトレーシングを行うことにより、予備チャネル推定を行う。
この推定は順次洗練され、したがってプリコーダが設計される。
数値シミュレーションでは、ブロック検出は95%精度で成功している。
我々のディジタルプリコーディングは、容量の90%を達成し、アナログプリコーディングは、プリコーダ設計にLIDARを利用した以前の作業よりも優れていた。
関連論文リスト
- Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
グラフニューラルネットワーク(GNN)を用いたモデルフリーでデータ駆動型デコーディングアプローチについて検討する。
GNNベースのデコーダは、シミュレーションデータのみを与えられた表面コード上での回路レベルのノイズに対する整合デコーダよりも優れていることを示す。
その結果、デコードに対する純粋にデータ駆動型アプローチが、実用的な量子誤り訂正のための実行可能な選択肢である可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-03T17:25:45Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
動的ニューラル表現デコーダ(NRD)と呼ばれる新しいデコーダを提案する。
エンコーダの出力上の各位置がセマンティックラベルの局所的なパッチに対応するので、この研究では、これらの局所的なパッチをコンパクトなニューラルネットワークで表現する。
このニューラル表現により、意味ラベル空間に先行する滑らかさを活用することができ、デコーダをより効率的にすることができる。
論文 参考訳(メタデータ) (2021-07-30T04:50:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
ニューラルネットワークのオートエンコーダモデルを放射線耐性ASICに実装して、損失のあるデータ圧縮を行うことができる。
これは、粒子物理学アプリケーション用に設計されたニューラルネットワークの耐放射線性オンディテクタASIC実装である。
論文 参考訳(メタデータ) (2021-05-04T18:06:23Z) - Encoded Prior Sliced Wasserstein AutoEncoder for learning latent
manifold representations [0.7614628596146599]
本稿では,Encoded Prior Sliced Wasserstein AutoEncoderを紹介する。
追加のプリエンコーダネットワークは、データ多様体の埋め込みを学習する。
従来のオートエンコーダとは違って,前者はデータの基盤となる幾何を符号化する。
論文 参考訳(メタデータ) (2020-10-02T14:58:54Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
複数のシンボルが同時に送信されるマルチユーザマルチインプットマルチアウトプット(MIMO)設定では、正確なシンボル検出が困難である。
本稿では,DeepSICと呼ぶ反復ソフト干渉キャンセリング(SIC)アルゴリズムの,データ駆動による実装を提案する。
DeepSICは、チャネルを線形にすることなく、限られたトレーニングサンプルから共同検出を行うことを学ぶ。
論文 参考訳(メタデータ) (2020-02-08T18:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。