Overhead-Free Blockage Detection and Precoding Through Physics-Based
Graph Neural Networks: LIDAR Data Meets Ray Tracing
- URL: http://arxiv.org/abs/2209.07350v2
- Date: Mon, 22 May 2023 13:32:54 GMT
- Title: Overhead-Free Blockage Detection and Precoding Through Physics-Based
Graph Neural Networks: LIDAR Data Meets Ray Tracing
- Authors: Matteo Nerini, Bruno Clerckx
- Abstract summary: Blockage detection is achieved by classifying light detection and ranging (LIDAR) data through a physics-based graph neural network (GNN)
For precoder design, a preliminary channel estimate is obtained by running ray tracing on a 3D surface obtained from LIDAR data.
Numerical simulations show that blockage detection is successful with 95% accuracy.
- Score: 58.73924499067486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this letter, we address blockage detection and precoder design for
multiple-input multiple-output (MIMO) links, without communication overhead
required. Blockage detection is achieved by classifying light detection and
ranging (LIDAR) data through a physics-based graph neural network (GNN). For
precoder design, a preliminary channel estimate is obtained by running ray
tracing on a 3D surface obtained from LIDAR data. This estimate is successively
refined and the precoder is designed accordingly. Numerical simulations show
that blockage detection is successful with 95% accuracy. Our digital precoding
achieves 90% of the capacity and analog precoding outperforms previous works
exploiting LIDAR for precoder design.
Related papers
- Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
We explore a model-free, data-driven, approach to decoding, using a graph neural network (GNN)
We show that the GNN-based decoder can outperform a matching decoder for circuit level noise on the surface code given only simulated data.
The results show that a purely data-driven approach to decoding may be a viable future option for practical quantum error correction.
arXiv Detail & Related papers (2023-07-03T17:25:45Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
A neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression.
This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.
arXiv Detail & Related papers (2021-05-04T18:06:23Z) - Encoded Prior Sliced Wasserstein AutoEncoder for learning latent
manifold representations [0.7614628596146599]
We introduce an Encoded Prior Sliced Wasserstein AutoEncoder.
An additional prior-encoder network learns an embedding of the data manifold.
We show that the prior encodes the geometry underlying the data unlike conventional autoencoders.
arXiv Detail & Related papers (2020-10-02T14:58:54Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.