The END: An Equivariant Neural Decoder for Quantum Error Correction
- URL: http://arxiv.org/abs/2304.07362v1
- Date: Fri, 14 Apr 2023 19:46:39 GMT
- Title: The END: An Equivariant Neural Decoder for Quantum Error Correction
- Authors: Evgenii Egorov, Roberto Bondesan, Max Welling
- Abstract summary: We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
- Score: 73.4384623973809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction is a critical component for scaling up quantum
computing. Given a quantum code, an optimal decoder maps the measured code
violations to the most likely error that occurred, but its cost scales
exponentially with the system size. Neural network decoders are an appealing
solution since they can learn from data an efficient approximation to such a
mapping and can automatically adapt to the noise distribution. In this work, we
introduce a data efficient neural decoder that exploits the symmetries of the
problem. We characterize the symmetries of the optimal decoder for the toric
code and propose a novel equivariant architecture that achieves state of the
art accuracy compared to previous neural decoders.
Related papers
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
arXiv Detail & Related papers (2023-07-18T17:46:33Z) - Neural network decoder for near-term surface-code experiments [0.7100520098029438]
Neural-network decoders can achieve a lower logical error rate compared to conventional decoders.
These decoders require no prior information about the physical error rates, making them highly adaptable.
arXiv Detail & Related papers (2023-07-06T20:31:25Z) - Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
We explore a model-free, data-driven, approach to decoding, using a graph neural network (GNN)
We show that the GNN-based decoder can outperform a matching decoder for circuit level noise on the surface code given only simulated data.
The results show that a purely data-driven approach to decoding may be a viable future option for practical quantum error correction.
arXiv Detail & Related papers (2023-07-03T17:25:45Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Scalable Neural Decoder for Topological Surface Codes [0.0]
We present a neural network based decoder for a family of stabilizer codes subject to noise and syndrome measurement errors.
The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code.
We show that such a preprocessing step allows to effectively reduce the error rate by up to two orders of magnitude in practical applications.
arXiv Detail & Related papers (2021-01-18T19:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.