FFPA-Net: Efficient Feature Fusion with Projection Awareness for 3D
Object Detection
- URL: http://arxiv.org/abs/2209.07419v1
- Date: Thu, 15 Sep 2022 16:13:19 GMT
- Title: FFPA-Net: Efficient Feature Fusion with Projection Awareness for 3D
Object Detection
- Authors: Chaokang Jiang, Guangming Wang, Jinxing Wu, Yanzi Miao, Hesheng Wang
- Abstract summary: unstructured 3D point clouds are filled in the 2D plane and 3D point cloud features are extracted faster using projection-aware convolution layers.
The corresponding indexes between different sensor signals are established in advance in the data preprocessing.
Two new plug-and-play fusion modules, LiCamFuse and BiLiCamFuse, are proposed.
- Score: 19.419030878019974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Promising complementarity exists between the texture features of color images
and the geometric information of LiDAR point clouds. However, there still
present many challenges for efficient and robust feature fusion in the field of
3D object detection. In this paper, first, unstructured 3D point clouds are
filled in the 2D plane and 3D point cloud features are extracted faster using
projection-aware convolution layers. Further, the corresponding indexes between
different sensor signals are established in advance in the data preprocessing,
which enables faster cross-modal feature fusion. To address LiDAR points and
image pixels misalignment problems, two new plug-and-play fusion modules,
LiCamFuse and BiLiCamFuse, are proposed. In LiCamFuse, soft query weights with
perceiving the Euclidean distance of bimodal features are proposed. In
BiLiCamFuse, the fusion module with dual attention is proposed to deeply
correlate the geometric and textural features of the scene. The quantitative
results on the KITTI dataset demonstrate that the proposed method achieves
better feature-level fusion. In addition, the proposed network shows a shorter
running time compared to existing methods.
Related papers
- Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object
Detection [16.198358858773258]
Multi-modal 3D object detection has been an active research topic in autonomous driving.
It is non-trivial to explore the cross-modal feature fusion between sparse 3D points and dense 2D pixels.
Recent approaches either fuse the image features with the point cloud features that are projected onto the 2D image plane or combine the sparse point cloud with dense image pixels.
arXiv Detail & Related papers (2022-10-18T06:15:56Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm.
The sparsity of point clouds, especially for the points far away, makes it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.
We propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI)
FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on baseline, and outperforms competing two-stage approaches.
arXiv Detail & Related papers (2022-09-22T02:07:25Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object
Detection [15.641616738865276]
We propose a general multimodal fusion framework FusionPainting to fuse the 2D RGB image and 3D point clouds at a semantic level for boosting the 3D object detection task.
Especially, the FusionPainting framework consists of three main modules: a multi-modal semantic segmentation module, an adaptive attention-based semantic fusion module, and a 3D object detector.
The effectiveness of the proposed framework has been verified on the large-scale nuScenes detection benchmark.
arXiv Detail & Related papers (2021-06-23T14:53:22Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Volumetric Propagation Network: Stereo-LiDAR Fusion for Long-Range Depth
Estimation [81.08111209632501]
We propose a geometry-aware stereo-LiDAR fusion network for long-range depth estimation.
We exploit sparse and accurate point clouds as a cue for guiding correspondences of stereo images in a unified 3D volume space.
Our network achieves state-of-the-art performance on the KITTI and the Virtual- KITTI datasets.
arXiv Detail & Related papers (2021-03-24T03:24:46Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.