Studying the explanations for the automated prediction of bug and
non-bug issues using LIME and SHAP
- URL: http://arxiv.org/abs/2209.07623v1
- Date: Thu, 15 Sep 2022 21:45:46 GMT
- Title: Studying the explanations for the automated prediction of bug and
non-bug issues using LIME and SHAP
- Authors: Benjamin Ledel and Steffen Herbold
- Abstract summary: We want to understand if machine learning models provide explanations for the classification that are reasonable to us as humans.
We also want to know if the prediction quality is correlated with the quality of explanations.
- Score: 7.792303263390021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context: The identification of bugs within the reported issues in an issue
tracker is crucial for the triage of issues. Machine learning models have shown
promising results regarding the performance of automated issue type prediction.
However, we have only limited knowledge beyond our assumptions how such models
identify bugs. LIME and SHAP are popular technique to explain the predictions
of classifiers.
Objective: We want to understand if machine learning models provide
explanations for the classification that are reasonable to us as humans and
align with our assumptions of what the models should learn. We also want to
know if the prediction quality is correlated with the quality of explanations.
Method: We conduct a study where we rate LIME and SHAP explanations based on
their quality of explaining the outcome of an issue type prediction model. For
this, we rate the quality of the explanations themselves, i.e., if they align
with our expectations and if they help us to understand the underlying machine
learning model.
Related papers
- Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Predictability and Comprehensibility in Post-Hoc XAI Methods: A
User-Centered Analysis [6.606409729669314]
Post-hoc explainability methods aim to clarify predictions of black-box machine learning models.
We conduct a user study to evaluate comprehensibility and predictability in two widely used tools: LIME and SHAP.
We find that the comprehensibility of SHAP is significantly reduced when explanations are provided for samples near a model's decision boundary.
arXiv Detail & Related papers (2023-09-21T11:54:20Z) - Explaining Hate Speech Classification with Model Agnostic Methods [0.9990687944474738]
The research goal of this paper is to bridge the gap between hate speech prediction and the explanations generated by the system to support its decision.
This has been achieved by first predicting the classification of a text and then providing a posthoc, model agnostic and surrogate interpretability approach.
arXiv Detail & Related papers (2023-05-30T19:52:56Z) - Explaining Predictions from Machine Learning Models: Algorithms, Users,
and Pedagogy [3.42658286826597]
Explanations can help users understand not only why ML models make certain predictions, but also how these predictions can be changed.
In this thesis, we examine the explainability of ML models from three vantage points: algorithms, users, and pedagogy.
arXiv Detail & Related papers (2022-09-12T08:36:35Z) - The Unreliability of Explanations in Few-Shot In-Context Learning [50.77996380021221]
We focus on two NLP tasks that involve reasoning over text, namely question answering and natural language inference.
We show that explanations judged as good by humans--those that are logically consistent with the input--usually indicate more accurate predictions.
We present a framework for calibrating model predictions based on the reliability of the explanations.
arXiv Detail & Related papers (2022-05-06T17:57:58Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Explainable Artificial Intelligence: How Subsets of the Training Data
Affect a Prediction [2.3204178451683264]
We propose a novel methodology which we call Shapley values for training data subset importance.
We show how the proposed explanations can be used to reveal biasedness in models and erroneous training data.
We argue that the explanations enable us to perceive more of the inner workings of the algorithms, and illustrate how models producing similar predictions can be based on very different parts of the training data.
arXiv Detail & Related papers (2020-12-07T12:15:47Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
We study explanations based on visual saliency in an image-based age prediction task.
We find that presenting model predictions improves human accuracy.
However, explanations of various kinds fail to significantly alter human accuracy or trust in the model.
arXiv Detail & Related papers (2020-07-23T20:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.