Explaining Predictions from Machine Learning Models: Algorithms, Users,
and Pedagogy
- URL: http://arxiv.org/abs/2209.05084v1
- Date: Mon, 12 Sep 2022 08:36:35 GMT
- Title: Explaining Predictions from Machine Learning Models: Algorithms, Users,
and Pedagogy
- Authors: Ana Lucic
- Abstract summary: Explanations can help users understand not only why ML models make certain predictions, but also how these predictions can be changed.
In this thesis, we examine the explainability of ML models from three vantage points: algorithms, users, and pedagogy.
- Score: 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model explainability has become an important problem in machine learning (ML)
due to the increased effect that algorithmic predictions have on humans.
Explanations can help users understand not only why ML models make certain
predictions, but also how these predictions can be changed. In this thesis, we
examine the explainability of ML models from three vantage points: algorithms,
users, and pedagogy, and contribute several novel solutions to the
explainability problem.
Related papers
- Pyreal: A Framework for Interpretable ML Explanations [51.14710806705126]
Pyreal is a system for generating a variety of interpretable machine learning explanations.
Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users.
Our studies demonstrate that Pyreal generates more useful explanations than existing systems.
arXiv Detail & Related papers (2023-12-20T15:04:52Z) - Predictability and Comprehensibility in Post-Hoc XAI Methods: A
User-Centered Analysis [6.606409729669314]
Post-hoc explainability methods aim to clarify predictions of black-box machine learning models.
We conduct a user study to evaluate comprehensibility and predictability in two widely used tools: LIME and SHAP.
We find that the comprehensibility of SHAP is significantly reduced when explanations are provided for samples near a model's decision boundary.
arXiv Detail & Related papers (2023-09-21T11:54:20Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Logic-Based Explainability in Machine Learning [0.0]
The operation of the most successful Machine Learning models is incomprehensible for human decision makers.
In recent years, there have been efforts on devising approaches for explaining ML models.
This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models.
arXiv Detail & Related papers (2022-10-24T13:43:07Z) - Local Interpretable Model Agnostic Shap Explanations for machine
learning models [0.0]
We propose a methodology that we define as Local Interpretable Model Agnostic Shap Explanations (LIMASE)
This proposed technique uses Shapley values under the LIME paradigm to achieve the following (a) explain prediction of any model by using a locally faithful and interpretable decision tree model on which the Tree Explainer is used to calculate the shapley values and give visually interpretable explanations.
arXiv Detail & Related papers (2022-10-10T10:07:27Z) - Studying the explanations for the automated prediction of bug and
non-bug issues using LIME and SHAP [7.792303263390021]
We want to understand if machine learning models provide explanations for the classification that are reasonable to us as humans.
We also want to know if the prediction quality is correlated with the quality of explanations.
arXiv Detail & Related papers (2022-09-15T21:45:46Z) - An Explainable Regression Framework for Predicting Remaining Useful Life
of Machines [6.374451442486538]
This paper proposes an explainable regression framework for the prediction of machines' Remaining Useful Life (RUL)
We also evaluate several Machine Learning (ML) algorithms including classical and Neural Networks (NNs) based solutions for the task.
arXiv Detail & Related papers (2022-04-28T15:44:12Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - An Information-Theoretic Approach to Personalized Explainable Machine
Learning [92.53970625312665]
We propose a simple probabilistic model for the predictions and user knowledge.
We quantify the effect of an explanation by the conditional mutual information between the explanation and prediction.
arXiv Detail & Related papers (2020-03-01T13:06:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.