Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models
- URL: http://arxiv.org/abs/2209.07646v1
- Date: Thu, 15 Sep 2022 23:11:11 GMT
- Title: Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models
- Authors: Harsh Sharma, Nicholas Galioto, Alex A. Gorodetsky, Boris Kramer
- Abstract summary: This paper proposes a probabilistic formulation for system identification (ID) and estimation of nonseparable Hamiltonian systems.
Nonseparable Hamiltonian systems arise in models from diverse science and engineering applications such as astrophysics, robotics, vortex dynamics, charged particle dynamics, and quantum mechanics.
- Score: 0.13764085113103217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a probabilistic Bayesian formulation for system
identification (ID) and estimation of nonseparable Hamiltonian systems using
stochastic dynamic models. Nonseparable Hamiltonian systems arise in models
from diverse science and engineering applications such as astrophysics,
robotics, vortex dynamics, charged particle dynamics, and quantum mechanics.
The numerical experiments demonstrate that the proposed method recovers
dynamical systems with higher accuracy and reduced predictive uncertainty
compared to state-of-the-art approaches. The results further show that accurate
predictions far outside the training time interval in the presence of sparse
and noisy measurements are possible, which lends robustness and
generalizability to the proposed approach. A quantitative benefit is prediction
accuracy with less than 10% relative error for more than 12 times longer than a
comparable least-squares-based method on a benchmark problem.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - An information field theory approach to Bayesian state and parameter estimation in dynamical systems [0.0]
This paper develops a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems.
We construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely.
arXiv Detail & Related papers (2023-06-03T16:36:43Z) - Reservoir Computing with Error Correction: Long-term Behaviors of
Stochastic Dynamical Systems [5.815325960286111]
We propose a data-driven framework combining Reservoir Computing and Normalizing Flow to study this issue.
We verify the effectiveness of the proposed framework in several experiments, including the Van der Pal, El Nino-Southern Oscillation simplified model, and Lorenz system.
arXiv Detail & Related papers (2023-05-01T05:50:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
This paper presents a machine learning framework (GP-NODE) for Bayesian systems identification from partial, noisy and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology, and a 50-dimensional human motion dynamical system.
arXiv Detail & Related papers (2021-03-04T23:42:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
Inverse problems for chaotic systems are numerically challenging.
Small perturbations in model parameters can cause very large changes in estimated forward trajectories.
Bizarre Artificial Neural Networks can be used to simultaneously fit a model and estimate model parameter uncertainty.
arXiv Detail & Related papers (2020-05-26T20:35:02Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.