Brownian Axion-like particles
- URL: http://arxiv.org/abs/2209.07658v2
- Date: Sat, 10 Dec 2022 13:45:13 GMT
- Title: Brownian Axion-like particles
- Authors: Shuyang Cao, Daniel Boyanovsky
- Abstract summary: We study the non-equilibrium dynamics of a pseudoscalar axion-like particle (ALP) weakly coupled to degrees of freedom in thermal equilibrium.
Time evolution is determined by the in-in effective action which we obtain to leading order in the (ALP) coupling.
We discuss possible cosmological consequences on structure formation, the effective number of relativistic species and birefringence of the cosmic microwave background.
- Score: 11.498089180181365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the non-equilibrium dynamics of a pseudoscalar axion-like particle
(ALP) weakly coupled to degrees of freedom in thermal equilibrium by obtaining
its reduced density matrix. Its time evolution is determined by the in-in
effective action which we obtain to leading order in the (ALP) coupling but to
\emph{all orders} in the couplings of the bath to other fields within or beyond
the standard model. The effective equation of motion for the (ALP) is a
Langevin equation with noise and friction kernels obeying the fluctuation
dissipation relation. A ``misaligned'' initial condition yields damped coherent
oscillations, however, the (ALP) population increases towards thermalization
with the bath. As a result, the energy density features a mixture of a cold
component from misalignment and a hot component from thermalization with
proportions that vary in time $(cold)\,e^{-\Gamma t}+(hot)\,(1-e^{-\Gamma t})$,
providing a scenario wherein the ``warmth'' of the dark matter evolves in time
from colder to hotter. As a specific example we consider the (ALP)-photon
coupling $g a \vec{E}\cdot \vec{B}$ to lowest order, valid from recombination
onwards. For $T \gg m_a$ the long-wavelength relaxation rate is substantially
enhanced $\Gamma_T = \frac{g^2\,m^2_a\,T}{16\pi} $. The ultraviolet divergences
of the (ALP) self-energy require higher order derivative terms in the effective
action. We find that at high temperature, the finite temperature effective mass
of the (ALP) is $m^2_a(T) = m^2_a(0)\Big[ 1-(T/T_c)^4\Big]$, with $T_c \propto
\sqrt{m_a(0)/g}$, \emph{suggesting} the possibility of an inverted phase
transition, which when combined with higher derivatives may possibly indicate
exotic new phases. We discuss possible cosmological consequences on structure
formation, the effective number of relativistic species and birefringence of
the cosmic microwave background.
Related papers
- Waveguide QED at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to the crystal sublattice B form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Non-equilibrium dynamics of Axion-like particles: the quantum master
equation [11.498089180181365]
We study the non-equilibrium dynamics of Axion-like particles (ALP) coupled to Standard Model degrees of freedom in thermal equilibrium.
The Quantum Master Equation (QME) for the (ALP) reduced density matrix is derived to leading order in the coupling of the (ALP) to the thermal bath.
arXiv Detail & Related papers (2022-12-10T00:52:19Z) - Exact solution for the filling-induced thermalization transition in a 1D
fracton system [0.0]
We study a random circuit model of constrained fracton dynamics in which particles undergo random local motion.
We identify an exact solution for the critical density $n_c$.
We show that there is a universal value of the correlation length exponent $nu = 2$ near the transition.
arXiv Detail & Related papers (2022-10-05T18:00:02Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Thermalization by off-shell processes: the virtues of small virtuality [0.0]
We study the thermalization of a scalar field $Phi$ coupled to two other scalar fields $chi_1,2$ that constitute a bath in thermal equilibrium.
For a range of masses the $Phi$ propagator features threshold and infrared divergences, a vanishing residue at the (quasi) particle pole and vanishing emphon-shell decay rates.
arXiv Detail & Related papers (2022-05-01T20:35:30Z) - Quantum thermal field fluctuation induced corrections to the interaction
between two ground-state atoms [0.0]
We generalize the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [the DDC formalism] in the fourth order for two atoms in interaction with scalar fields in vacuum to a thermal bath at finite temperature $T$.
We analyze in detail the thermal corrections to the van der Waals and Casimir-Polder interactions.
arXiv Detail & Related papers (2022-01-25T13:12:03Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Energy of a free Brownian particle coupled to thermal vacuum [0.0]
Experimentalists have come to temperatures very close to absolute zero at which physics that was once ordinary becomes extraordinary.
We study the simplest open quantum system, namely, a free quantum Brownian particle coupled to thermal vacuum.
arXiv Detail & Related papers (2020-03-30T15:44:04Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.