Modeling Multiple Views via Implicitly Preserving Global Consistency and
Local Complementarity
- URL: http://arxiv.org/abs/2209.07811v2
- Date: Wed, 9 Aug 2023 14:49:42 GMT
- Title: Modeling Multiple Views via Implicitly Preserving Global Consistency and
Local Complementarity
- Authors: Jiangmeng Li, Wenwen Qiang, Changwen Zheng, Bing Su, Farid Razzak,
Ji-Rong Wen, Hui Xiong
- Abstract summary: We propose a global consistency and complementarity network (CoCoNet) to learn representations from multiple views.
On the global stage, we reckon that the crucial knowledge is implicitly shared among views, and enhancing the encoder to capture such knowledge can improve the discriminability of the learned representations.
Lastly on the local stage, we propose a complementarity-factor, which joints cross-view discriminative knowledge, and it guides the encoders to learn not only view-wise discriminability but also cross-view complementary information.
- Score: 61.05259660910437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While self-supervised learning techniques are often used to mining implicit
knowledge from unlabeled data via modeling multiple views, it is unclear how to
perform effective representation learning in a complex and inconsistent
context. To this end, we propose a methodology, specifically consistency and
complementarity network (CoCoNet), which avails of strict global inter-view
consistency and local cross-view complementarity preserving regularization to
comprehensively learn representations from multiple views. On the global stage,
we reckon that the crucial knowledge is implicitly shared among views, and
enhancing the encoder to capture such knowledge from data can improve the
discriminability of the learned representations. Hence, preserving the global
consistency of multiple views ensures the acquisition of common knowledge.
CoCoNet aligns the probabilistic distribution of views by utilizing an
efficient discrepancy metric measurement based on the generalized sliced
Wasserstein distance. Lastly on the local stage, we propose a heuristic
complementarity-factor, which joints cross-view discriminative knowledge, and
it guides the encoders to learn not only view-wise discriminability but also
cross-view complementary information. Theoretically, we provide the
information-theoretical-based analyses of our proposed CoCoNet. Empirically, to
investigate the improvement gains of our approach, we conduct adequate
experimental validations, which demonstrate that CoCoNet outperforms the
state-of-the-art self-supervised methods by a significant margin proves that
such implicit consistency and complementarity preserving regularization can
enhance the discriminability of latent representations.
Related papers
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - LoDisc: Learning Global-Local Discriminative Features for
Self-Supervised Fine-Grained Visual Recognition [18.442966979622717]
We present to incorporate the subtle local fine-grained feature learning into global self-supervised contrastive learning.
A novel pretext task called Local Discrimination (LoDisc) is proposed to explicitly supervise self-supervised model's focus towards local pivotal regions.
We show that Local Discrimination pretext task can effectively enhance fine-grained clues in important local regions, and the global-local framework further refines the fine-grained feature representations of images.
arXiv Detail & Related papers (2024-03-06T21:36:38Z) - Self-Supervised Consistent Quantization for Fully Unsupervised Image
Retrieval [17.422973861218182]
Unsupervised image retrieval aims to learn an efficient retrieval system without expensive data annotations.
Recent advance proposes deep fully unsupervised image retrieval aiming at training a deep model from scratch to jointly optimize visual features and quantization codes.
We propose a novel self-supervised consistent quantization approach to deep fully unsupervised image retrieval, which consists of part consistent quantization and global consistent quantization.
arXiv Detail & Related papers (2022-06-20T14:39:59Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Self-Supervised Learning Across Domains [33.86614301708017]
We propose to apply a similar approach to the problem of object recognition across domains.
Our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals on the same images.
This secondary task helps the network to focus on object shapes, learning concepts like spatial orientation and part correlation, while acting as a regularizer for the classification task.
arXiv Detail & Related papers (2020-07-24T06:19:53Z) - Learning from Extrinsic and Intrinsic Supervisions for Domain
Generalization [95.73898853032865]
We present a new domain generalization framework that learns how to generalize across domains simultaneously.
We demonstrate the effectiveness of our approach on two standard object recognition benchmarks.
arXiv Detail & Related papers (2020-07-18T03:12:24Z) - Self-supervised Learning from a Multi-view Perspective [121.63655399591681]
We show that self-supervised representations can extract task-relevant information and discard task-irrelevant information.
Our theoretical framework paves the way to a larger space of self-supervised learning objective design.
arXiv Detail & Related papers (2020-06-10T00:21:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.