LogGD:Detecting Anomalies from System Logs by Graph Neural Networks
- URL: http://arxiv.org/abs/2209.07869v1
- Date: Fri, 16 Sep 2022 11:51:58 GMT
- Title: LogGD:Detecting Anomalies from System Logs by Graph Neural Networks
- Authors: Yongzheng Xie, Hongyu Zhang and Muhammad Ali Babar
- Abstract summary: We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
- Score: 14.813971618949068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Log analysis is one of the main techniques engineers use to troubleshoot
faults of large-scale software systems. During the past decades, many log
analysis approaches have been proposed to detect system anomalies reflected by
logs. They usually take log event counts or sequential log events as inputs and
utilize machine learning algorithms including deep learning models to detect
system anomalies. These anomalies are often identified as violations of
quantitative relational patterns or sequential patterns of log events in log
sequences. However, existing methods fail to leverage the spatial structural
relationships among log events, resulting in potential false alarms and
unstable performance. In this study, we propose a novel graph-based log anomaly
detection method, LogGD, to effectively address the issue by transforming log
sequences into graphs. We exploit the powerful capability of Graph Transformer
Neural Network, which combines graph structure and node semantics for log-based
anomaly detection. We evaluate the proposed method on four widely-used public
log datasets. Experimental results show that LogGD can outperform
state-of-the-art quantitative-based and sequence-based methods and achieve
stable performance under different window size settings. The results confirm
that LogGD is effective in log-based anomaly detection.
Related papers
- Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
High cost of manual annotation and dynamic nature of usage scenarios present major challenges to effective log analysis.
This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios.
We also introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor.
arXiv Detail & Related papers (2024-09-18T11:35:58Z) - LogELECTRA: Self-supervised Anomaly Detection for Unstructured Logs [0.0]
The goal of log-based anomaly detection is to automatically detect system anomalies by analyzing the large number of logs generated in a short period of time.
Previous studies have used a log to extract templates from unstructured log data and detect anomalies on the basis of patterns of the template occurrences.
We propose LogELECTRA, a new log anomaly detection model that analyzes a single line of log messages more deeply on the basis of self-supervised anomaly detection.
arXiv Detail & Related papers (2024-02-16T01:47:02Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Graph Neural Networks based Log Anomaly Detection and Explanation [19.66344385835598]
Event logs are widely used to record the status of high-tech systems.
Most existing log anomaly detection methods take a log event count matrix or log event sequences as input.
We propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs.
arXiv Detail & Related papers (2023-07-02T09:38:43Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.