Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction
- URL: http://arxiv.org/abs/2409.11890v1
- Date: Wed, 18 Sep 2024 11:35:58 GMT
- Title: Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction
- Authors: Caihong Wang, Du Xu, Zonghang Li,
- Abstract summary: High cost of manual annotation and dynamic nature of usage scenarios present major challenges to effective log analysis.
This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios.
We also introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor.
- Score: 1.474723404975345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of rapid Internet development, log data has become indispensable for recording the operations of computer devices and software. These data provide valuable insights into system behavior and necessitate thorough analysis. Recent advances in text analysis have enabled deep learning to achieve significant breakthroughs in log anomaly detection. However, the high cost of manual annotation and the dynamic nature of usage scenarios present major challenges to effective log analysis. This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios. It leverages the expressive power of large models for log content analysis and the capability of graph structures to encapsulate correlations between logs. It retains key log information while integrating the causal relationships between logs to achieve effective feature extraction. Additionally, we introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor. By employing graph clustering algorithms for log anomaly detection, Log2graphs enables the identification of abnormal logs without the need for labeled data. We comprehensively evaluate the feature extraction capability of DualGCN-LogAE and the anomaly detection performance of Log2graphs using public log datasets across five different scenarios. Our evaluation metrics include detection accuracy and graph clustering quality scores. Experimental results demonstrate that the log features extracted by DualGCN-LogAE outperform those obtained by other methods on classic classifiers. Moreover, Log2graphs surpasses existing unsupervised log detection methods, providing a robust tool for advancing log anomaly detection research.
Related papers
- GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Graph Neural Networks based Log Anomaly Detection and Explanation [19.66344385835598]
Event logs are widely used to record the status of high-tech systems.
Most existing log anomaly detection methods take a log event count matrix or log event sequences as input.
We propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs.
arXiv Detail & Related papers (2023-07-02T09:38:43Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
arXiv Detail & Related papers (2022-09-16T11:51:58Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Log2NS: Enhancing Deep Learning Based Analysis of Logs With Formal to
Prevent Survivorship Bias [0.37943450391498496]
We introduce log to Neuro-symbolic (Log2NS), a framework that combines probabilistic analysis from machine learning (ML) techniques on observational data with certainties derived from symbolic reasoning on an underlying formal model.
Log2NS provides an ability to query from static logs and correlation engines for positive instances, as well as formal reasoning for negative and unseen instances.
arXiv Detail & Related papers (2021-05-29T00:01:08Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.