論文の概要: StyleGAN Encoder-Based Attack for Block Scrambled Face Images
- arxiv url: http://arxiv.org/abs/2209.07953v1
- Date: Fri, 16 Sep 2022 14:12:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 12:49:48.509629
- Title: StyleGAN Encoder-Based Attack for Block Scrambled Face Images
- Title(参考訳): ブロックスクランブル顔画像に対するStyleGANエンコーダによる攻撃
- Authors: AprilPyone MaungMaung and Hitoshi Kiya
- Abstract要約: 本稿では,スクランブルされた顔画像,特に Encryption-then-Compression (EtC) 適用画像のブロック手法を提案する。
暗号化された画像から同一の画像を復元する代わりに、暗号化された画像から識別可能な情報を明らかにするスタイルの復元に重点を置いている。
現状の攻撃方法はEtC画像から知覚情報を復元することはできないが,本手法では,髪の色,肌の色,眼鏡,性別などの個人識別情報を開示する。
- 参考スコア(独自算出の注目度): 14.505867475659276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an attack method to block scrambled face images,
particularly Encryption-then-Compression (EtC) applied images by utilizing the
existing powerful StyleGAN encoder and decoder for the first time. Instead of
reconstructing identical images as plain ones from encrypted images, we focus
on recovering styles that can reveal identifiable information from the
encrypted images. The proposed method trains an encoder by using plain and
encrypted image pairs with a particular training strategy. While
state-of-the-art attack methods cannot recover any perceptual information from
EtC images, the proposed method discloses personally identifiable information
such as hair color, skin color, eyeglasses, gender, etc. Experiments were
carried out on the CelebA dataset, and results show that reconstructed images
have some perceptual similarities compared to plain images.
- Abstract(参考訳): 本稿では,スクランブルされた顔画像,特にEncryption-then-Compression (EtC)の適用画像を,既存の強力なStyleGANエンコーダとデコーダを用いて初めてブロックする攻撃手法を提案する。
暗号化された画像から同一の画像を復元する代わりに、暗号化された画像から識別可能な情報を明らかにするスタイルの復元に注力する。
提案手法は、プレーンおよび暗号化された画像ペアと特定のトレーニング戦略を用いてエンコーダを訓練する。
現状の攻撃方法はEtC画像から知覚情報を復元することはできないが,本手法では,髪の色,肌の色,眼鏡,性別などの個人識別情報を開示する。
celebaデータセットを用いて実験を行い,復元画像と平文画像との知覚的類似性について検討した。
関連論文リスト
- Unveiling Hidden Visual Information: A Reconstruction Attack Against Adversarial Visual Information Hiding [6.649753747542211]
代表的な画像暗号化法は、敵対的視覚情報隠蔽(AVIH)である。
AVIH法では、型I対逆例法は、全く異なるように見えるが、依然としてマシンによって元のものとして認識されている画像を生成する。
本稿では,AVIH暗号方式に対する二重戦略DR攻撃を,生成的対逆損失と(2)拡張的ID損失を取り入れて導入する。
論文 参考訳(メタデータ) (2024-08-08T06:58:48Z) - Attack GAN (AGAN ): A new Security Evaluation Tool for Perceptual Encryption [1.6385815610837167]
最先端(SOTA)ディープラーニングモデルのトレーニングには大量のデータが必要である。
知覚暗号化は、イメージを認識不能なフォーマットに変換して、トレーニングデータ内のセンシティブな視覚情報を保護する。
これは、モデルの精度を大幅に下げるコストが伴う。
Adversarial Visual Information Hiding (AVIH)は、人間の目には認識できない暗号化された画像を作成することによって、画像のプライバシを保護するために、この欠点を克服する。
論文 参考訳(メタデータ) (2024-07-09T06:03:32Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
本稿では,テキスト誘導側情報を用いた新しい深層画像圧縮手法を提案する。
具体的には,CLIPテキストエンコーダとSemantic-Spatial Awareブロックを用いてテキストと画像の特徴を融合する。
論文 参考訳(メタデータ) (2023-11-23T08:31:11Z) - Recoverable Privacy-Preserving Image Classification through Noise-like
Adversarial Examples [26.026171363346975]
分類などのクラウドベースの画像関連サービスが重要になっている。
本研究では,新しいプライバシー保護画像分類手法を提案する。
暗号化された画像は、秘密鍵を使用して、高い忠実度(保存可能な)で元の形式に復号することができる。
論文 参考訳(メタデータ) (2023-10-19T13:01:58Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
より良い開発AIシステムと、センシティブなトレーニングデータから距離を置くことの間の、ソフトウェアエンジニアに関する大きな対立が露呈している。
画像が暗号化され、人間に認識され、機械に認識される」という、効率的なプライバシー保護学習パラダイムを提案する。
提案手法は,機械が認識可能な情報を保存しながら,暗号化された画像が人間に認識されなくなることを保証できることを示す。
論文 参考訳(メタデータ) (2023-06-06T13:41:37Z) - Generative Model-Based Attack on Learnable Image Encryption for
Privacy-Preserving Deep Learning [14.505867475659276]
本稿では,プライバシ保護深層学習のための学習可能な画像暗号化手法に対する,新たな生成モデルに基づく攻撃を提案する。
我々は、StyleGANベースモデルと潜伏拡散ベースモデルという、最先端の2つの生成モデルを使用している。
その結果,提案手法により再構成された画像は,通常の画像と知覚的に類似していることがわかった。
論文 参考訳(メタデータ) (2023-03-09T05:00:17Z) - From Image to Imuge: Immunized Image Generation [23.430377385327308]
イムゲ(Imuge)は、画像の自己回復のための画像改ざん耐性生成スキームである。
我々は、U-Netバックボンドエンコーダ、タンパーローカライゼーションネットワーク、イメージリカバリのためのデコーダを共同で訓練する。
本手法は, 種々の攻撃が存在するにも関わらず, 精度の高い改ざん領域の細部を復元できることを示す。
論文 参考訳(メタデータ) (2021-10-27T05:56:15Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。