IoT Data Analytics in Dynamic Environments: From An Automated Machine
Learning Perspective
- URL: http://arxiv.org/abs/2209.08018v1
- Date: Fri, 16 Sep 2022 16:02:56 GMT
- Title: IoT Data Analytics in Dynamic Environments: From An Automated Machine
Learning Perspective
- Authors: Li Yang, Abdallah Shami
- Abstract summary: We conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML.
To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted.
- Score: 10.350337750192997
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the wide spread of sensors and smart devices in recent years, the data
generation speed of the Internet of Things (IoT) systems has increased
dramatically. In IoT systems, massive volumes of data must be processed,
transformed, and analyzed on a frequent basis to enable various IoT services
and functionalities. Machine Learning (ML) approaches have shown their capacity
for IoT data analytics. However, applying ML models to IoT data analytics tasks
still faces many difficulties and challenges, specifically, effective model
selection, design/tuning, and updating, which have brought massive demand for
experienced data scientists. Additionally, the dynamic nature of IoT data may
introduce concept drift issues, causing model performance degradation. To
reduce human efforts, Automated Machine Learning (AutoML) has become a popular
field that aims to automatically select, construct, tune, and update machine
learning models to achieve the best performance on specified tasks. In this
paper, we conduct a review of existing methods in the model selection, tuning,
and updating procedures in the area of AutoML in order to identify and
summarize the optimal solutions for every step of applying ML algorithms to IoT
data analytics. To justify our findings and help industrial users and
researchers better implement AutoML approaches, a case study of applying AutoML
to IoT anomaly detection problems is conducted in this work. Lastly, we discuss
and classify the challenges and research directions for this domain.
Related papers
- Modeling IoT Traffic Patterns: Insights from a Statistical Analysis of an MTC Dataset [1.2289361708127877]
Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives.
Effective IoT traffic management requires modeling and predicting intrincate machine-type communication (MTC) dynamics.
We perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov-Smirnov, Anderson-Darling, chi-squared, and root mean square error.
arXiv Detail & Related papers (2024-09-03T14:24:18Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - A Multi-Stage Automated Online Network Data Stream Analytics Framework
for IIoT Systems [10.350337750192997]
We propose a novel Multi-Stage Automated Network Analytics (MSANA) framework for concept drift adaptation in IIoT systems.
MSANA consists of dynamic data pre-processing, Drift-based Dynamic Feature Selection (DD-FS) method, dynamic model learning & selection, and Window-based Performance Weighted Probability Averaging Ensemble (W-PWPAE) model.
It is a complete automated data stream analytics framework that enables automatic, effective, and efficient data analytics for IIoT systems in Industry 5.0.
arXiv Detail & Related papers (2022-10-05T02:18:36Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
System of Chip technology, Internet of Things (IoT), cloud computing, and artificial intelligence has brought more possibilities of improving and solving the current problems.
Data analytics and the use of machine learning/deep learning makes it possible to learn the underlying patterns and make decisions based on what was learned from massive data generated from IoT sensors.
Process involves the use of IoT sensors, Raspberry Pis, Amazon Web Services (AWS) and multiple machine learning techniques with the intent to identify anomalous cases for the smart home security system.
arXiv Detail & Related papers (2021-09-28T15:57:29Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - From Data to Actions in Intelligent Transportation Systems: a
Prescription of Functional Requirements for Model Actionability [10.27718355111707]
This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes.
Grounded in this described data modeling pipeline for ITS, wedefine the characteristics, engineering requisites and intrinsic challenges to its three compounding stages, namely, data fusion, adaptive learning and model evaluation.
arXiv Detail & Related papers (2020-02-06T12:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.