Self-Optimizing Feature Transformation
- URL: http://arxiv.org/abs/2209.08044v1
- Date: Fri, 16 Sep 2022 16:50:41 GMT
- Title: Self-Optimizing Feature Transformation
- Authors: Meng Xiao, Dongjie Wang, Yanjie Fu, Kunpeng Liu, Min Wu, Hui Xiong,
Yuanchun Zhou
- Abstract summary: Feature transformation aims to extract a good representation (feature) space by mathematically transforming existing features.
Current research focuses on domain knowledge-based feature engineering or learning latent representations.
We present a self-optimizing framework for feature transformation.
- Score: 33.458785763961004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature transformation aims to extract a good representation (feature) space
by mathematically transforming existing features. It is crucial to address the
curse of dimensionality, enhance model generalization, overcome data sparsity,
and expand the availability of classic models. Current research focuses on
domain knowledge-based feature engineering or learning latent representations;
nevertheless, these methods are not entirely automated and cannot produce a
traceable and optimal representation space. When rebuilding a feature space for
a machine learning task, can these limitations be addressed concurrently? In
this extension study, we present a self-optimizing framework for feature
transformation. To achieve a better performance, we improved the preliminary
work by (1) obtaining an advanced state representation for enabling reinforced
agents to comprehend the current feature set better; and (2) resolving Q-value
overestimation in reinforced agents for learning unbiased and effective
policies. Finally, to make experiments more convincing than the preliminary
work, we conclude by adding the outlier detection task with five datasets,
evaluating various state representation approaches, and comparing different
training strategies. Extensive experiments and case studies show that our work
is more effective and superior.
Related papers
- Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Traceable Group-Wise Self-Optimizing Feature Transformation Learning: A
Dual Optimization Perspective [33.45878576396101]
Feature transformation aims to reconstruct an effective representation space by mathematically refining the existing features.
Existing research predominantly focuses on domain knowledge-based feature engineering or learning latent representations.
Our initial work took a pioneering step towards this challenge by introducing a novel self-optimizing framework.
arXiv Detail & Related papers (2023-06-29T12:29:21Z) - Traceable Automatic Feature Transformation via Cascading Actor-Critic
Agents [25.139229855367088]
Feature transformation is an essential task to boost the effectiveness and interpretability of machine learning (ML)
We formulate the feature transformation task as an iterative, nested process of feature generation and selection.
We show 24.7% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
arXiv Detail & Related papers (2022-12-27T08:20:19Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
We reformulate representation space reconstruction into an interactive process of nested feature generation and selection.
We design a group-wise generation strategy to cross a feature group, an operation, and another feature group to generate new features.
We present extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our system.
arXiv Detail & Related papers (2022-05-28T21:34:14Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Learning Rich Nearest Neighbor Representations from Self-supervised
Ensembles [60.97922557957857]
We provide a framework to perform self-supervised model ensembling via a novel method of learning representations directly through gradient descent at inference time.
This technique improves representation quality, as measured by k-nearest neighbors, both on the in-domain dataset and in the transfer setting.
arXiv Detail & Related papers (2021-10-19T22:24:57Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.