Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising
- URL: http://arxiv.org/abs/2209.08094v1
- Date: Fri, 16 Sep 2022 04:10:29 GMT
- Title: Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising
- Authors: Yiwen Shan, Dong Hu, Zhi Wang, Tao Jia
- Abstract summary: One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately.
This paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework.
Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.
- Score: 9.20787253404652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color image denoising is frequently encountered in various image processing
and computer vision tasks. One traditional strategy is to convert the RGB image
to a less correlated color space and denoise each channel of the new space
separately. However, such a strategy can not fully exploit the correlated
information between channels and is inadequate to obtain satisfactory results.
To address this issue, this paper proposes a new multi-channel optimization
model for color image denoising under the nuclear norm minus Frobenius norm
minimization framework. Specifically, based on the block-matching, the color
image is decomposed into overlapping RGB patches. For each patch, we stack its
similar neighbors to form the corresponding patch matrix. The proposed model is
performed on the patch matrix to recover its noise-free version. During the
recovery process, a) a weight matrix is introduced to fully utilize the noise
difference between channels; b) the singular values are shrunk adaptively
without additionally assigning weights. With them, the proposed model can
achieve promising results while keeping simplicity. To solve the proposed
model, an accurate and effective algorithm is built based on the alternating
direction method of multipliers framework. The solution of each updating step
can be analytically expressed in closed-from. Rigorous theoretical analysis
proves the solution sequences generated by the proposed algorithm converge to
their respective stationary points. Experimental results on both synthetic and
real noise datasets demonstrate the proposed model outperforms state-of-the-art
models.
Related papers
- Score Priors Guided Deep Variational Inference for Unsupervised
Real-World Single Image Denoising [14.486289176696438]
We propose a score priors-guided deep variational inference, namely ScoreDVI, for practical real-world denoising.
We exploit a Non-$i.i.d$ Gaussian mixture model and variational noise posterior to model the real-world noise.
Our method outperforms other single image-based real-world denoising methods and achieves comparable performance to dataset-based unsupervised methods.
arXiv Detail & Related papers (2023-08-09T03:26:58Z) - A Novel Truncated Norm Regularization Method for Multi-channel Color
Image Denoising [5.624787484101139]
This paper is proposed to denoise color images with a double-weighted truncated nuclear norm minus truncated Frobenius norm minimization (DtNFM) method.
Through exploiting the nonlocal self-similarity of the noisy image, the similar structures are gathered and a series of similar patch matrices are constructed.
Experiments on synthetic and real noise datasets demonstrate that the proposed method outperforms many state-of-the-art color image denoising methods.
arXiv Detail & Related papers (2023-07-16T03:40:35Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - Mitigating Channel-wise Noise for Single Image Super Resolution [33.383282898248076]
We propose to super-resolve noisy color images by considering the color channels jointly.
Results demonstrate the super-resolving capability of the approach in real scenarios.
arXiv Detail & Related papers (2021-12-14T17:45:15Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Edge Adaptive Hybrid Regularization Model For Image Deblurring [0.0]
An automated spatially adaptive regularization model is proposed for reconstruction of noisy and blurred images.
It detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information.
Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time.
arXiv Detail & Related papers (2020-11-20T08:12:23Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.