Edge Adaptive Hybrid Regularization Model For Image Deblurring
- URL: http://arxiv.org/abs/2011.10260v2
- Date: Tue, 6 Apr 2021 09:02:24 GMT
- Title: Edge Adaptive Hybrid Regularization Model For Image Deblurring
- Authors: Tingting Zhang (1), Jie Chen (1), Caiying Wu (1), Zhifei He (1),
Tieyong Zeng (2) and Qiyu Jin (1) ((1) School of Mathematical Science, Inner
Mongolia University, Hohhot, China (2) Department of Mathematics, The Chinese
University of Hong Kong, Shatin, Hong Kong, China)
- Abstract summary: An automated spatially adaptive regularization model is proposed for reconstruction of noisy and blurred images.
It detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information.
Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The parameter selection is crucial to regularization based image restoration
methods. Generally speaking, a spatially fixed parameter for regularization
item in the whole image does not perform well for both edge and smooth areas. A
larger parameter of regularization item reduces noise better in smooth areas
but blurs edge regions, while a small parameter sharpens edge but causes
residual noise. In this paper, an automated spatially adaptive regularization
model, which combines the harmonic and TV models, is proposed for
reconstruction of noisy and blurred images. In the proposed model, it detects
the edges and then spatially adjusts the parameters of Tikhonov and TV
regularization terms for each pixel according to the edge information.
Accordingly, the edge information matrix will be also dynamically updated
during the iterations. Computationally, the newly-established model is convex,
which can be solved by the semi-proximal alternating direction method of
multipliers (sPADMM) with a linear-rate convergence rate. Numerical simulation
results demonstrate that the proposed model effectively reserves the image
edges and eliminates the noise and blur at the same time. In comparison to
state-of-the-art algorithms, it outperforms other methods in terms of PSNR,
SSIM and visual quality.
Related papers
- RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
We introduce a novel diffusion-based learning framework, textbfRecDiffusion, for image stitching rectangling.
This framework combines Motion Diffusion Models (MDM) to generate motion fields, effectively transitioning from the stitched image's irregular borders to a geometrically corrected intermediary.
arXiv Detail & Related papers (2024-03-28T06:22:45Z) - A locally statistical active contour model for SAR image segmentation
can be solved by denoising algorithms [6.965119490863576]
Experimental results for real SAR images show that the proposed image segmentation model can efficiently stop the contours at weak or blurred edges.
The proposed FPRD1/FPRD2 models are about 1/2 (or less than) of the time required for the SBRD model based on the Split Bregman technique.
arXiv Detail & Related papers (2024-01-10T00:27:14Z) - SAR image segmentation algorithms based on I-divergence-TV model [0.7458485930898191]
We propose a novel variational active contour model based on I-divergence-TV model to segment Synthetic aperture radar (SAR) images with multiplicative gamma noise.
The proposed model can efficiently stop the contours at weak or blurred edges, and can automatically detect the exterior and interior boundaries of images.
arXiv Detail & Related papers (2023-12-09T04:14:46Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising [9.20787253404652]
One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately.
This paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework.
Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.
arXiv Detail & Related papers (2022-09-16T04:10:29Z) - Edge Tracing using Gaussian Process Regression [0.0]
We introduce a novel edge tracing algorithm using Gaussian process regression.
Our approach has the ability to efficiently trace edges in image sequences.
Various applications to medical imaging and satellite imaging are used to validate the technique.
arXiv Detail & Related papers (2021-11-05T16:43:14Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
We propose a novel spatial-separated curve rendering network (S$2$CRNet) for efficient and high-resolution image harmonization.
The proposed method reduces more than 90% parameters compared with previous methods.
Our method can work smoothly on higher resolution images in real-time which is more than 10$times$ faster than the existing methods.
arXiv Detail & Related papers (2021-09-13T07:20:16Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Weighted Encoding Based Image Interpolation With Nonlocal Linear
Regression Model [8.013127492678272]
In image super-resolution, the low-resolution image is directly down-sampled from its high-resolution counterpart without blurring and noise.
To address this problem, we propose a novel image model based on sparse representation.
New approach to learn adaptive sub-dictionary online instead of clustering.
arXiv Detail & Related papers (2020-03-04T03:20:21Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.