論文の概要: Compose & Embellish: Well-Structured Piano Performance Generation via A
Two-Stage Approach
- arxiv url: http://arxiv.org/abs/2209.08212v1
- Date: Sat, 17 Sep 2022 01:20:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-09-20 19:49:11.986184
- Title: Compose & Embellish: Well-Structured Piano Performance Generation via A
Two-Stage Approach
- Title(参考訳): compose & embellish: 2段階アプローチによるピアノ演奏の構造化
- Authors: Shih-Lun Wu, Yi-Hsuan Yang
- Abstract要約: まずリードシートを構成する2段階のTransformerベースのフレームワークを考案し,それを伴奏と表現力のあるタッチで実装する。
目的および主観的な実験により,コンポジション・アンド・エンベリッシュは芸術の現在の状態と実演の間の構造的ギャップを半分に縮め,豊かさやコヒーレンスといった他の音楽的側面も改善することが示された。
- 参考スコア(独自算出の注目度): 36.49582705724548
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Even with strong sequence models like Transformers, generating expressive
piano performances with long-range musical structures remains challenging.
Meanwhile, methods to compose well-structured melodies or lead sheets (melody +
chords), i.e., simpler forms of music, gained more success. Observing the
above, we devise a two-stage Transformer-based framework that Composes a lead
sheet first, and then Embellishes it with accompaniment and expressive touches.
Such a factorization also enables pretraining on non-piano data. Our objective
and subjective experiments show that Compose & Embellish shrinks the gap in
structureness between a current state of the art and real performances by half,
and improves other musical aspects such as richness and coherence as well.
- Abstract(参考訳): Transformersのような強力なシーケンスモデルでも、長距離の音楽構造を持つ表現豊かなピアノ演奏を生成することは難しい。
一方、構造が整ったメロディーやリードシート(メロディ+コード)、すなわちより単純な音楽形式を作曲する手法は、より成功を収めた。
そこで我々は,まずリードシートを構成する2段階のTransformerベースのフレームワークを考案し,それを伴奏と表現的タッチで実装する。
このような因子化は、非ピアノデータに対する事前トレーニングを可能にする。
目的および主観的な実験により,コンポジション・アンド・エンベリッシュは芸術の現在の状態と実演の間の構造的ギャップを半減させ,豊かさやコヒーレンスといった他の音楽的側面も改善することを示した。
関連論文リスト
- Exploring Classical Piano Performance Generation with Expressive Music Variational AutoEncoder [15.668253435545921]
本稿では,作曲家とピアニストの二重的役割をエミュレートすることを目的とした,クラシックピアノの演奏をゼロから創り出すという課題に対処する。
本稿では,古典演奏の韻律的構造と表現的ニュアンスの両方を効果的に捉えた表現的複合語表現を提案する。
本稿では,楽譜関連コンテンツを生成するベクトル量子変分オートエンコーダ(VQ-VAE)ブランチと,表現的詳細を生成するバニラVAEブランチという,ピアノ奏者の役割を果たす2つのブランチを特徴とするモデルであるExpressive Music Variational AutoEncoder(XMVAE)を提案する。
論文 参考訳(メタデータ) (2025-07-02T10:54:23Z) - Scaling Self-Supervised Representation Learning for Symbolic Piano Performance [52.661197827466886]
本研究では,多量のシンボリック・ピアノ転写を訓練した自己回帰型トランスフォーマモデルの能力について検討した。
比較的小型で高品質なサブセットをファインチューンモデルに使い、音楽の継続を生成、シンボリックな分類タスクを実行し、汎用的なコントラストMIDI埋め込みを生成する。
論文 参考訳(メタデータ) (2025-06-30T14:00:14Z) - From Generality to Mastery: Composer-Style Symbolic Music Generation via Large-Scale Pre-training [4.7205815347741185]
広義のコーパスから学んだ一般的な音楽知識が、特定の作曲家スタイルの熟達度をいかに高めるかを検討する。
まず、ポップ、フォーク、クラシック音楽の大規模なコーパス上で、REMIベースの音楽生成モデルを事前訓練する。
そして、Bach、Mozart、Beethoven、Chopinの4人の著名な作曲家による、人間によって検証された小さなデータセットに、それを微調整します。
論文 参考訳(メタデータ) (2025-06-20T22:20:59Z) - YuE: Scaling Open Foundation Models for Long-Form Music Generation [134.54174498094565]
YuEはLLaMA2アーキテクチャに基づいたオープンファンデーションモデルのファミリーである。
歌詞のアライメント、コヒーレントな音楽構造、適切な伴奏を伴う声楽メロディを維持しながら、最大5分間の音楽を生成する。
論文 参考訳(メタデータ) (2025-03-11T17:26:50Z) - ImprovNet: Generating Controllable Musical Improvisations with Iterative Corruption Refinement [6.873190001575463]
ImprovNetは、表現力と制御性のある即興演奏を生成するトランスフォーマーベースのアーキテクチャである。
ジャンル固有のスタイルでメロディーを調和させ、短期間の即時継続および補充タスクを実行することができる。
論文 参考訳(メタデータ) (2025-02-06T21:45:38Z) - PerTok: Expressive Encoding and Modeling of Symbolic Musical Ideas and Variations [0.3683202928838613]
Cadenzaは、シンボリック・ミュージック・アイデアの表現的バリエーションを予測するための、新しい多段階生成フレームワークである。
提案するフレームワークは,1)コンストラクタと2)パフォーマの2段階からなる。
我々のフレームワークはミュージシャンにインスピレーションを与える目的で設計、研究、実装されている。
論文 参考訳(メタデータ) (2024-10-02T22:11:31Z) - MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
制御信号と対応する音楽トークンを直接リンクする事前学習タスクを導入する。
次に、生成した音楽と制御プロンプトとの整合性を向上する新たな対実的損失を実現する。
論文 参考訳(メタデータ) (2024-07-05T08:08:22Z) - SongComposer: A Large Language Model for Lyric and Melody Generation in Song Composition [82.38021790213752]
SongComposerは、音楽専門の大規模言語モデル(LLM)である。
3つの重要なイノベーションを活用することで、メロディーをLLMに同時に構成する能力を統合する。
歌詞からメロディへの生成、メロディから歌詞への生成、歌の継続、テキストから歌への生成といったタスクにおいて、高度なLLMよりも優れています。
SongComposeは大規模なトレーニング用データセットで、中国語と英語の歌詞とメロディのペアを含む。
論文 参考訳(メタデータ) (2024-02-27T16:15:28Z) - Museformer: Transformer with Fine- and Coarse-Grained Attention for
Music Generation [138.74751744348274]
本研究では,音楽生成に新たな細粒度・粗粒度対応トランスフォーマーであるMuseformerを提案する。
具体的には、細かな注意を払って、特定のバーのトークンは、音楽構造に最も関係のあるバーのトークンに、直接参加する。
粗い注意を払って、トークンは計算コストを減らすために、それぞれのトークンではなく他のバーの要約にのみ参加する。
論文 参考訳(メタデータ) (2022-10-19T07:31:56Z) - SeCo: Separating Unknown Musical Visual Sounds with Consistency Guidance [88.0355290619761]
この作品は未知の楽器の分離に焦点を当てている。
本稿では,未知のカテゴリを分離できるセコ(SeCo)フレームワークを提案する。
本手法は,新たな楽曲カテゴリに適応する能力を示し,基本手法を顕著なマージンで上回る性能を示す。
論文 参考訳(メタデータ) (2022-03-25T09:42:11Z) - A-Muze-Net: Music Generation by Composing the Harmony based on the
Generated Melody [91.22679787578438]
ピアノ音楽のMidiファイルを生成する方法を提案する。
この方法は、左手を右手に固定した2つのネットワークを用いて、左右の手をモデル化する。
ミディは音階に不変な方法で表現され、メロディはハーモニーを調和させる目的で表現される。
論文 参考訳(メタデータ) (2021-11-25T09:45:53Z) - Structure-Enhanced Pop Music Generation via Harmony-Aware Learning [20.06867705303102]
構造強化されたポップ・ミュージック・ジェネレーションに調和学習を活用することを提案する。
主観的・客観的評価の結果,Harmony-Aware Hierarchical Music Transformer (HAT) が生成した楽曲の質を著しく向上させることが示された。
論文 参考訳(メタデータ) (2021-09-14T05:04:13Z) - Controllable deep melody generation via hierarchical music structure
representation [14.891975420982511]
MusicFrameworksは階層的な音楽構造表現であり、フル長のメロディを作成するための多段階の生成プロセスである。
各フレーズでメロディを生成するために、2つの異なるトランスフォーマーベースネットワークを用いてリズムとベーシックメロディを生成する。
さまざまな曲をカスタマイズしたり追加したりするために、音楽フレームワークのコード、基本的なメロディ、リズム構造を変更して、それに応じてネットワークがメロディを生成する。
論文 参考訳(メタデータ) (2021-09-02T01:31:14Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
ユーザが指定したシンボリックシナリオと過去の音楽コンテキストを組み合わせることで,メロディーを構成するモデルを提案する。
本モデルでは,8拍子の音符列を基本単位として長い旋律を生成でき,一貫したリズムパターン構造を他の特定の歌と共有することができる。
その結果,本モデルが生成する音楽は,顕著な繰り返し構造,豊かな動機,安定したリズムパターンを有する傾向が示唆された。
論文 参考訳(メタデータ) (2020-02-05T06:23:44Z) - Pop Music Transformer: Beat-based Modeling and Generation of Expressive
Pop Piano Compositions [37.66340344198797]
我々は、既存のトランスフォーマーモデルよりも優れたリズム構造でポップピアノ音楽を構成するポップ・ミュージック・トランスフォーマーを構築した。
特に、入力データにメートル法構造を課すことにより、トランスフォーマーは音楽のビートバーフレーズ階層構造をより容易に認識できるようにする。
論文 参考訳(メタデータ) (2020-02-01T14:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。