Neural Implicit Surface Reconstruction using Imaging Sonar
- URL: http://arxiv.org/abs/2209.08221v1
- Date: Sat, 17 Sep 2022 02:23:09 GMT
- Title: Neural Implicit Surface Reconstruction using Imaging Sonar
- Authors: Mohamad Qadri, Michael Kaess, Ioannis Gkioulekas
- Abstract summary: We present a technique for dense 3D reconstruction of objects using an imaging sonar, also known as forward-looking sonar (FLS)
Compared to previous methods that model the scene geometry as point clouds or volumetric grids, we represent geometry as a neural implicit function.
We perform experiments on real and synthetic datasets and show that our algorithm reconstructs high-fidelity surface geometry from multi-view FLS images at much higher quality than was possible with previous techniques and without suffering from their associated memory overhead.
- Score: 38.73010653104763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a technique for dense 3D reconstruction of objects using an
imaging sonar, also known as forward-looking sonar (FLS). Compared to previous
methods that model the scene geometry as point clouds or volumetric grids, we
represent the geometry as a neural implicit function. Additionally, given such
a representation, we use a differentiable volumetric renderer that models the
propagation of acoustic waves to synthesize imaging sonar measurements. We
perform experiments on real and synthetic datasets and show that our algorithm
reconstructs high-fidelity surface geometry from multi-view FLS images at much
higher quality than was possible with previous techniques and without suffering
from their associated memory overhead.
Related papers
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Differentiable Rendering for Synthetic Aperture Radar Imagery [0.0]
We propose an approach for differentiable rendering of Synthetic Aperture Radar (SAR) imagery, which combines methods from 3D computer graphics with neural rendering.
We demonstrate the approach on the inverse graphics problem of 3D Object Reconstruction from limited SAR imagery using high-fidelity simulated SAR data.
arXiv Detail & Related papers (2022-04-04T05:27:40Z) - GeoNeRF: Generalizing NeRF with Geometry Priors [2.578242050187029]
We present GeoNeRF, a generalizable photorealistic novel view method based on neural radiance fields.
Our approach consists of two main stages: a geometry reasoner and a synthesis.
Experiments show that GeoNeRF outperforms state-of-the-art generalizable neural rendering models on various synthetic and real datasets.
arXiv Detail & Related papers (2021-11-26T15:15:37Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Volume Rendering of Neural Implicit Surfaces [57.802056954935495]
This paper aims to improve geometry representation and reconstruction in neural volume rendering.
We achieve that by modeling the volume density as a function of the geometry.
Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions.
arXiv Detail & Related papers (2021-06-22T20:23:16Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - Multiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance [46.488713939892136]
We introduce a neural network that simultaneously learns the unknown geometry, camera parameters, and a neural architecture that approximates the light reflected from the surface towards the camera.
We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera materials from the DTU MVS dataset.
arXiv Detail & Related papers (2020-03-22T10:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.