GeoNeRF: Generalizing NeRF with Geometry Priors
- URL: http://arxiv.org/abs/2111.13539v1
- Date: Fri, 26 Nov 2021 15:15:37 GMT
- Title: GeoNeRF: Generalizing NeRF with Geometry Priors
- Authors: Mohammad Mahdi Johari, Yann Lepoittevin, Fran\c{c}ois Fleuret
- Abstract summary: We present GeoNeRF, a generalizable photorealistic novel view method based on neural radiance fields.
Our approach consists of two main stages: a geometry reasoner and a synthesis.
Experiments show that GeoNeRF outperforms state-of-the-art generalizable neural rendering models on various synthetic and real datasets.
- Score: 2.578242050187029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present GeoNeRF, a generalizable photorealistic novel view synthesis
method based on neural radiance fields. Our approach consists of two main
stages: a geometry reasoner and a renderer. To render a novel view, the
geometry reasoner first constructs cascaded cost volumes for each nearby source
view. Then, using a Transformer-based attention mechanism and the cascaded cost
volumes, the renderer infers geometry and appearance, and renders detailed
images via classical volume rendering techniques. This architecture, in
particular, allows sophisticated occlusion reasoning, gathering information
from consistent source views. Moreover, our method can easily be fine-tuned on
a single scene, and renders competitive results with per-scene optimized neural
rendering methods with a fraction of computational cost. Experiments show that
GeoNeRF outperforms state-of-the-art generalizable neural rendering models on
various synthetic and real datasets. Lastly, with a slight modification to the
geometry reasoner, we also propose an alternative model that adapts to RGBD
images. This model directly exploits the depth information often available
thanks to depth sensors. The implementation code will be publicly available.
Related papers
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Neural Implicit Surface Reconstruction using Imaging Sonar [38.73010653104763]
We present a technique for dense 3D reconstruction of objects using an imaging sonar, also known as forward-looking sonar (FLS)
Compared to previous methods that model the scene geometry as point clouds or volumetric grids, we represent geometry as a neural implicit function.
We perform experiments on real and synthetic datasets and show that our algorithm reconstructs high-fidelity surface geometry from multi-view FLS images at much higher quality than was possible with previous techniques and without suffering from their associated memory overhead.
arXiv Detail & Related papers (2022-09-17T02:23:09Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
We present CG-NeRF, a cascade and generalizable neural radiance fields method for view synthesis.
We first train CG-NeRF on multiple 3D scenes of the DTU dataset.
We show that CG-NeRF outperforms state-of-the-art generalizable neural rendering methods on various synthetic and real datasets.
arXiv Detail & Related papers (2022-08-09T12:23:48Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.