GaitMM: Multi-Granularity Motion Sequence Learning for Gait Recognition
- URL: http://arxiv.org/abs/2209.08470v2
- Date: Sat, 24 Jun 2023 04:48:05 GMT
- Title: GaitMM: Multi-Granularity Motion Sequence Learning for Gait Recognition
- Authors: Lei Wang, Bo Liu, Bincheng Wang, Fuqiang Yu
- Abstract summary: Gait recognition aims to identify individual-specific walking patterns by observing the different periodic movements of each body part.
Most existing methods treat each part equally and fail to account for the data redundancy caused by the different step frequencies and sampling rates of gait.
In this study, we propose a multi-granularity motion representation (GaitMM) for gait sequence learning.
- Score: 6.877671230651998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait recognition aims to identify individual-specific walking patterns by
observing the different periodic movements of each body part. However, most
existing methods treat each part equally and fail to account for the data
redundancy caused by the different step frequencies and sampling rates of gait
sequences. In this study, we propose a multi-granularity motion representation
network (GaitMM) for gait sequence learning. In GaitMM, we design a combined
full-body and fine-grained sequence learning module (FFSL) to explore
part-independent spatio-temporal representations. Moreover, we utilize a
frame-wise compression strategy, referred to as multi-scale motion aggregation
(MSMA), to capture discriminative information in the gait sequence. Experiments
on two public datasets, CASIA-B and OUMVLP, show that our approach reaches
state-of-the-art performances.
Related papers
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton
Matching [77.6989219290789]
One-shot skeleton action recognition aims to learn a skeleton action recognition model with a single training sample.
This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching.
arXiv Detail & Related papers (2023-07-14T11:52:10Z) - GaitStrip: Gait Recognition via Effective Strip-based Feature
Representations and Multi-Level Framework [34.397404430838286]
We present a strip-based multi-level gait recognition network, named GaitStrip, to extract comprehensive gait information at different levels.
To be specific, our high-level branch explores the context of gait sequences and our low-level one focuses on detailed posture changes.
Our GaitStrip achieves state-of-the-art performance in both normal walking and complex conditions.
arXiv Detail & Related papers (2022-03-08T09:49:48Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - Sequential convolutional network for behavioral pattern extraction in
gait recognition [0.7874708385247353]
We propose a sequential convolutional network (SCN) to learn the walking pattern of individuals.
In SCN, behavioral information extractors (BIE) are constructed to comprehend intermediate feature maps in time series.
A multi-frame aggregator in SCN performs feature integration on a sequence whose length is uncertain, via a mobile 3D convolutional layer.
arXiv Detail & Related papers (2021-04-23T08:44:10Z) - Indoor Group Activity Recognition using Multi-Layered HMMs [0.0]
Group Activities (GA) based on imagery data processing have significant applications in surveillance systems.
We propose Ontology GAR with a proper inference model that is capable of identifying and classifying a sequence of events in group activities.
A multi-layered Markov Model (HMM) is proposed to recognize different levels of abstract observations.
arXiv Detail & Related papers (2021-01-23T22:02:12Z) - MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan
Synchronization [61.015704878681795]
We present a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for 3D point clouds.
The two non-trivial challenges posed by this multi-scan multibody setting are.
guaranteeing correspondence and segmentation consistency across multiple input point clouds and.
obtaining robust motion-based rigid body segmentation applicable to novel object categories.
arXiv Detail & Related papers (2021-01-17T06:36:28Z) - Multi-modal Fusion for Single-Stage Continuous Gesture Recognition [45.19890687786009]
We introduce a single-stage continuous gesture recognition framework, called Temporal Multi-Modal Fusion (TMMF)
TMMF can detect and classify multiple gestures in a video via a single model.
This approach learns the natural transitions between gestures and non-gestures without the need for a pre-processing segmentation step.
arXiv Detail & Related papers (2020-11-10T07:09:35Z) - Multi-Granularity Reference-Aided Attentive Feature Aggregation for
Video-based Person Re-identification [98.7585431239291]
Video-based person re-identification aims at matching the same person across video clips.
In this paper, we propose an attentive feature aggregation module, namely Multi-Granularity Reference-Attentive Feature aggregation module MG-RAFA.
Our framework achieves the state-of-the-art ablation performance on three benchmark datasets.
arXiv Detail & Related papers (2020-03-27T03:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.