Real-Time Moving Flock Detection in Pedestrian Trajectories Using Sequential Deep Learning Models
- URL: http://arxiv.org/abs/2502.15252v1
- Date: Fri, 21 Feb 2025 07:04:34 GMT
- Title: Real-Time Moving Flock Detection in Pedestrian Trajectories Using Sequential Deep Learning Models
- Authors: Amartaivan Sanjjamts, Hiroshi Morita, Togootogtokh Enkhtogtokh,
- Abstract summary: This paper investigates the use of sequential deep learning models, including Recurrent Neural Networks (RNNs), for real-time flock detection in multi-pedestrian trajectories.<n>We validate our method using real-world group movement datasets, demonstrating its robustness across varying sequence lengths and diverse movement patterns.<n>We extend our approach to identify other forms of collective motion, such as convoys and swarms, paving the way for more comprehensive multi-agent behavior analysis.
- Score: 1.2289361708127877
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding collective pedestrian movement is crucial for applications in crowd management, autonomous navigation, and human-robot interaction. This paper investigates the use of sequential deep learning models, including Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformers, for real-time flock detection in multi-pedestrian trajectories. Our proposed approach consists of a two-stage process: first, a pre-trained binary classification model is used for pairwise trajectory classification, and second, the learned representations are applied to identify multi-agent flocks dynamically. We validate our method using real-world group movement datasets, demonstrating its robustness across varying sequence lengths and diverse movement patterns. Experimental results indicate that our model consistently detects pedestrian flocks with high accuracy and stability, even in dynamic and noisy environments. Furthermore, we extend our approach to identify other forms of collective motion, such as convoys and swarms, paving the way for more comprehensive multi-agent behavior analysis.
Related papers
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Multi-agent Long-term 3D Human Pose Forecasting via Interaction-aware Trajectory Conditioning [41.09061877498741]
We propose an interaction-aware trajectory-conditioned long-term multi-agent human pose forecasting model.
Our model effectively handles the multi-modality of human motion and the complexity of long-term multi-agent interactions.
arXiv Detail & Related papers (2024-04-08T06:15:13Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Learning Behavior Representations Through Multi-Timescale Bootstrapping [8.543808476554695]
We introduce Bootstrap Across Multiple Scales (BAMS), a multi-scale representation learning model for behavior.
We first apply our method on a dataset of quadrupeds navigating in different terrain types, and show that our model captures the temporal complexity of behavior.
arXiv Detail & Related papers (2022-06-14T17:57:55Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - CDN-MEDAL: Two-stage Density and Difference Approximation Framework for
Motion Analysis [3.337126420148156]
We propose a novel, two-stage method of change detection with two convolutional neural networks.
Our two-stage framework contains approximately 3.5K parameters in total but still maintains rapid convergence to intricate motion patterns.
arXiv Detail & Related papers (2021-06-07T16:39:42Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.