Nanoscale covariance magnetometry with diamond quantum sensors
- URL: http://arxiv.org/abs/2209.08703v1
- Date: Mon, 19 Sep 2022 01:46:19 GMT
- Title: Nanoscale covariance magnetometry with diamond quantum sensors
- Authors: Jared Rovny, Zhiyang Yuan, Mattias Fitzpatrick, Ahmed I. Abdalla,
Laura Futamura, Carter Fox, Matthew Carl Cambria, Shimon Kolkowitz, and
Nathalie P. de Leon
- Abstract summary: Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long spin coherence times.
In averaging over many single-NV center experiments, both techniques discard information.
Here we propose and implement a new sensing modality, whereby two or more NV centers are measured simultaneously.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long
spin coherence times that can be used to sense magnetic fields with high
sensitivity and spatial resolution. Typically, the magnetic field projection at
a single point is measured by averaging many sequential measurements with a
single NV center, or the magnetic field distribution is reconstructed by taking
a spatial average over an ensemble of many NV centers. In averaging over many
single-NV center experiments, both techniques discard information. Here we
propose and implement a new sensing modality, whereby two or more NV centers
are measured simultaneously, and we extract temporal and spatial correlations
in their signals that would otherwise be inaccessible. We analytically derive
the measurable two-point correlator in the presence of environmental noise,
quantum projection noise, and readout noise. We show that optimizing the
readout noise is critical for measuring correlations, and we experimentally
demonstrate measurements of correlated applied noise using spin-to-charge
readout of two NV centers. We also implement a spectral reconstruction protocol
for disentangling local and nonlocal noise sources, and demonstrate that
independent control of two NV centers can be used to measure the temporal
structure of correlations. Our covariance magnetometry scheme has numerous
applications in studying spatiotemporal structure factors and dynamics, and
opens a new frontier in nanoscale sensing.
Related papers
- Massively multiplexed nanoscale magnetometry with diamond quantum sensors [0.14277663283573688]
Single nitrogen vacancy (NV) centers in diamond have been used extensively for nanoscale sensing.
We design and implement a multiplexed NV sensing platform that allows us to read out many single NV centers simultaneously.
arXiv Detail & Related papers (2024-08-21T14:39:28Z) - Spin Squeezing Enhanced Quantum Magnetometry with Nitrogen-Vacancy Center Qutrits [0.0]
We explore the utility of quantum spin squeezing in quantum magnetometry, focusing on three-level Nitrogen-Vacancy (NV) centers within diamond.
Our findings reveal that leveraging qutrits and spin squeezing yields enhanced magnetometric precision, albeit constrained by dephasing effects.
arXiv Detail & Related papers (2024-06-21T17:36:30Z) - Automatic Detection of Nuclear Spins at Arbitrary Magnetic Fields via Signal-to-Image AI Model [0.0]
We present a signal-to-image deep learning model capable of automatically inferring the number of nuclear spins surrounding a NV sensor.
Our model is trained to operate effectively across various magnetic field scenarios, requires no prior knowledge of the involved nuclei, and is designed to handle noisy signals.
arXiv Detail & Related papers (2023-11-25T14:18:38Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Simulation of ODMR Spectra from Nitrogen-Vacancy Ensembles in Diamond
for Electric Field Sensing [0.0]
We present an open source simulation tool that models the influence of arbitrary electric and magnetic fields on the electronic and nuclear spin states of NV ensembles.
Specifically, the code computes the transition strengths and predicts the sensitivity under shot-noise-limited optically-detected magnetic resonance.
We show that our code can be used to optimize sensitivity in situations where usual arguments based on neglecting terms in the full Hamiltonian would give sub-optimal results.
arXiv Detail & Related papers (2023-01-10T18:16:12Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dynamical decoupling methods in nanoscale NMR [0.0]
Nuclear magnetic resonance schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond.
These minute devices allow for magnetometry of nuclear spin ensembles with high spatial and frequency resolution at ambient conditions.
arXiv Detail & Related papers (2021-04-21T16:18:48Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.