論文の概要: TANDEM3D: Active Tactile Exploration for 3D Object Recognition
- arxiv url: http://arxiv.org/abs/2209.08772v1
- Date: Mon, 19 Sep 2022 05:54:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 15:46:46.610997
- Title: TANDEM3D: Active Tactile Exploration for 3D Object Recognition
- Title(参考訳): TANDEM3D:3次元物体認識のためのアクティブ触覚探索
- Authors: Jingxi Xu, Han Lin, Shuran Song, Matei Ciocarlie
- Abstract要約: 触覚信号を用いた3次元物体認識のための協調学習フレームワークであるTANDEM3Dを提案する。
TANDEM3Dは、PointNet++を使って接触位置と正規値から3Dオブジェクト表現を構築する新しいエンコーダに基づいている。
本手法はシミュレーションで完全に訓練され,実世界の実験で検証される。
- 参考スコア(独自算出の注目度): 16.548376556543015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tactile recognition of 3D objects remains a challenging task. Compared to 2D
shapes, the complex geometry of 3D surfaces requires richer tactile signals,
more dexterous actions, and more advanced encoding techniques. In this work, we
propose TANDEM3D, a method that applies a co-training framework for exploration
and decision making to 3D object recognition with tactile signals. Starting
with our previous work, which introduced a co-training paradigm for 2D
recognition problems, we introduce a number of advances that enable us to scale
up to 3D. TANDEM3D is based on a novel encoder that builds 3D object
representation from contact positions and normals using PointNet++.
Furthermore, by enabling 6DOF movement, TANDEM3D explores and collects
discriminative touch information with high efficiency. Our method is trained
entirely in simulation and validated with real-world experiments. Compared to
state-of-the-art baselines, TANDEM3D achieves higher accuracy and a lower
number of actions in recognizing 3D objects and is also shown to be more robust
to different types and amounts of sensor noise. Video is available at
https://jxu.ai/tandem3d.
- Abstract(参考訳): 3dオブジェクトの触覚認識は依然として難しい課題である。
2次元形状と比較すると、3次元表面の複雑な形状はよりリッチな触覚信号、より巧妙な動作、より高度な符号化技術を必要とする。
本研究では,触覚信号を用いた3次元物体認識における探索と意思決定のための協調学習フレームワークであるTANDEM3Dを提案する。
2次元認識問題のための協調学習パラダイムを導入したこれまでの研究から始め、我々は最大3Dまでスケールアップできる多くの進歩を紹介した。
TANDEM3Dは、PointNet++を使って接触位置と正規値から3Dオブジェクト表現を構築する新しいエンコーダに基づいている。
さらに、6DOF動作を有効にすることで、TANDEM3Dは高い効率で識別タッチ情報を探索して収集する。
本手法はシミュレーションで完全に訓練され,実世界の実験で検証される。
最先端のベースラインと比較して、TANDEM3Dは3Dオブジェクトを認識する際の精度と動作回数を高くし、センサノイズの種類や量に対してより堅牢であることを示す。
ビデオはhttps://jxu.ai/tandem3dで閲覧できる。
関連論文リスト
- BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence [11.91274849875519]
画像中心の3次元知覚モデルBIP3Dを導入し,点中心の手法の限界を克服する。
我々は、事前学習された2次元視覚基盤モデルを利用して意味理解を強化し、空間理解を改善するために空間拡張モジュールを導入する。
我々の実験では、BIP3Dは、EmbodiedScanベンチマークで現在の最先端結果より優れており、3D検出タスクでは5.69%、視覚的グラウンドタスクでは15.25%の改善が達成されている。
論文 参考訳(メタデータ) (2024-11-22T11:35:42Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
本稿では,3次元ラベルを必要とせずに2次元ドメインと3次元ドメイン間の制約を活用できるフレームワークを提案する。
具体的には、LiDARと画像特徴をオブジェクト認識領域に基づいて整列する特徴レベルの制約を設計する。
第二に、出力レベルの制約は、2Dと投影された3Dボックスの推定の重なりを強制するために開発される。
第3に、トレーニングレベルの制約は、視覚データと整合した正確で一貫した3D擬似ラベルを生成することによって利用される。
論文 参考訳(メタデータ) (2023-12-12T18:57:25Z) - Look Around and Refer: 2D Synthetic Semantics Knowledge Distillation for
3D Visual Grounding [23.672405624011873]
本稿では,点雲から合成した2次元手がかりを用いて3次元視覚ストリームを統合するモジュールを提案する。
学習した視覚表現の質を高める能力について実証的に示す。
提案したモジュールはLear Around and Refer (LAR)と呼ばれ、3つのベンチマークで最先端の3Dビジュアルグラウンド技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2022-11-25T17:12:08Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
既存の歩行認識の研究は、制約されたシーンにおける人間の体のシルエットや骨格のような2D表現によって支配されている。
本稿では,野生における歩行認識のための高密度な3次元表現の探索を目的とする。
大規模な3D表現に基づく歩行認識データセットGait3Dを構築した。
論文 参考訳(メタデータ) (2022-04-06T03:54:06Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
入力画像から3次元特徴持ち上げ演算子を用いて3次元シーン空間に整合した3次元ボクセル特徴の正規格子を学習する。
この3Dボクセルの特徴に基づき,新しいCenterNet-3D検出ヘッドは3D空間におけるキーポイント検出として3D検出を定式化する。
我々は、粗度ボキセル化や、新しい局所PCA-SDF形状表現を含む、効率的な粗度から細度の再構成モジュールを考案する。
論文 参考訳(メタデータ) (2021-11-04T18:30:37Z) - Unsupervised Learning of Visual 3D Keypoints for Control [104.92063943162896]
高次元画像からの感覚運動制御ポリシーの学習は、基礎となる視覚表現の品質に大きく依存する。
本稿では,画像から3次元幾何学的構造を直接教師なしで学習するフレームワークを提案する。
これらの発見された3Dキーポイントは、時間と3D空間の両方で一貫した方法で、ロボットの関節と物体の動きを有意義にキャプチャする傾向がある。
論文 参考訳(メタデータ) (2021-06-14T17:59:59Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
本稿では,ポイントクラウドデータとRGB画像から3次元オブジェクト形状をアノテートする対話型フレームワークを提案する。
当社のフレームワークは,芸術的,グラフィック的専門知識のないナイーブユーザを対象としている。
論文 参考訳(メタデータ) (2020-08-24T21:51:29Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。