Neural-Symbolic Entangled Framework for Complex Query Answering
- URL: http://arxiv.org/abs/2209.08779v1
- Date: Mon, 19 Sep 2022 06:07:10 GMT
- Title: Neural-Symbolic Entangled Framework for Complex Query Answering
- Authors: Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, Huajun Chen
- Abstract summary: We propose a Neural and Entangled framework (ENeSy) for complex query answering.
It enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness.
ENeSy achieves the SOTA performance on several benchmarks, especially in the setting of the training model only with the link prediction task.
- Score: 22.663509971491138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answering complex queries over knowledge graphs (KG) is an important yet
challenging task because of the KG incompleteness issue and cascading errors
during reasoning. Recent query embedding (QE) approaches to embed the entities
and relations in a KG and the first-order logic (FOL) queries into a low
dimensional space, answering queries by dense similarity search. However,
previous works mainly concentrate on the target answers, ignoring intermediate
entities' usefulness, which is essential for relieving the cascading error
problem in logical query answering. In addition, these methods are usually
designed with their own geometric or distributional embeddings to handle
logical operators like union, intersection, and negation, with the sacrifice of
the accuracy of the basic operator - projection, and they could not absorb
other embedding methods to their models. In this work, we propose a Neural and
Symbolic Entangled framework (ENeSy) for complex query answering, which enables
the neural and symbolic reasoning to enhance each other to alleviate the
cascading error and KG incompleteness. The projection operator in ENeSy could
be any embedding method with the capability of link prediction, and the other
FOL operators are handled without parameters. With both neural and symbolic
reasoning results contained, ENeSy answers queries in ensembles. ENeSy achieves
the SOTA performance on several benchmarks, especially in the setting of the
training model only with the link prediction task.
Related papers
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Prompt-fused framework for Inductive Logical Query Answering [31.736934787328156]
We propose a query-aware prompt-fused framework named Pro-QE.
We show that our model successfully handles the issue of unseen entities in logical queries.
arXiv Detail & Related papers (2024-03-19T11:30:30Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
We propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs.
In order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced.
Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering.
arXiv Detail & Related papers (2024-01-29T10:54:28Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs [29.47155614953955]
We develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space.
Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.
arXiv Detail & Related papers (2023-03-21T13:59:15Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Fuzzy Logic based Logical Query Answering on Knowledge Graph [37.039516386710716]
We present FuzzQE, a fuzzy logic based query embedding framework for answering FOL queries over KGs.
FuzzyQE follows fuzzy logic to define logical operators in a principled and learning free manner.
Experiments on two benchmark datasets demonstrate that FuzzQE achieves significantly better performance in answering FOL queries.
arXiv Detail & Related papers (2021-08-05T05:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.