Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors
- URL: http://arxiv.org/abs/2304.07063v4
- Date: Tue, 22 Oct 2024 12:28:13 GMT
- Title: Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors
- Authors: Hang Yin, Zihao Wang, Yangqiu Song,
- Abstract summary: We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
- Score: 58.340159346749964
- License:
- Abstract: Reasoning on knowledge graphs is a challenging task because it utilizes observed information to predict the missing one. Particularly, answering complex queries based on first-order logic is one of the crucial tasks to verify learning to reason abilities for generalization and composition. Recently, the prevailing method is query embedding which learns the embedding of a set of entities and treats logic operations as set operations and has shown great empirical success. Though there has been much research following the same formulation, many of its claims lack a formal and systematic inspection. In this paper, we rethink this formulation and justify many of the previous claims by characterizing the scope of queries investigated previously and precisely identifying the gap between its formulation and its goal, as well as providing complexity analysis for the currently investigated queries. Moreover, we develop a new dataset containing ten new types of queries with features that have never been considered and therefore can provide a thorough investigation of complex queries. Finally, we propose a new neural-symbolic method, Fuzzy Inference with Truth value (FIT), where we equip the neural link predictors with fuzzy logic theory to support end-to-end learning using complex queries with provable reasoning capability. Empirical results show that our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
Related papers
- One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
We propose AnyCQ, a graph neural network model that can classify answers to any conjunctive query on any knowledge graph.
We show that AnyCQ can generalize to large queries of arbitrary structure, reliably classifying and retrieving answers to samples where existing approaches fail.
arXiv Detail & Related papers (2024-09-21T00:30:44Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Prompt-fused framework for Inductive Logical Query Answering [31.736934787328156]
We propose a query-aware prompt-fused framework named Pro-QE.
We show that our model successfully handles the issue of unseen entities in logical queries.
arXiv Detail & Related papers (2024-03-19T11:30:30Z) - Soft Reasoning on Uncertain Knowledge Graphs [85.1968214421899]
We study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming.
We propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs.
arXiv Detail & Related papers (2024-03-03T13:13:53Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
We propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs.
In order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced.
Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering.
arXiv Detail & Related papers (2024-01-29T10:54:28Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
We propose a new large-scale dataset, ConvFinQA, to study the chain of numerical reasoning in conversational question answering.
Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations.
arXiv Detail & Related papers (2022-10-07T23:48:50Z) - Parsimonious Inference [0.0]
Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures.
Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation.
arXiv Detail & Related papers (2021-03-03T04:13:14Z) - ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning [85.33459673197149]
We introduce a new Reading dataset requiring logical reasoning (ReClor) extracted from standardized graduate admission examinations.
In this paper, we propose to identify biased data points and separate them into EASY set and the rest as HARD set.
Empirical results show that state-of-the-art models have an outstanding ability to capture biases contained in the dataset with high accuracy on EASY set.
However, they struggle on HARD set with poor performance near that of random guess, indicating more research is needed to essentially enhance the logical reasoning ability of current models.
arXiv Detail & Related papers (2020-02-11T11:54:29Z) - Relational Neural Machines [19.569025323453257]
This paper presents a novel framework allowing jointly train the parameters of the learners and of a First-Order Logic based reasoner.
A Neural Machine is able recover both classical learning results in case of pure sub-symbolic learning, and Markov Logic Networks.
Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems.
arXiv Detail & Related papers (2020-02-06T10:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.