Quantum computational finance: martingale asset pricing for incomplete
markets
- URL: http://arxiv.org/abs/2209.08867v1
- Date: Mon, 19 Sep 2022 09:22:01 GMT
- Title: Quantum computational finance: martingale asset pricing for incomplete
markets
- Authors: Patrick Rebentrost, Alessandro Luongo, Samuel Bosch, Seth Lloyd
- Abstract summary: We show that a variety of quantum techniques can be applied to the pricing problem in finance.
We discuss three different methods that are distinct from previous works.
- Score: 69.73491758935712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A derivative is a financial security whose value is a function of underlying
traded assets and market outcomes. Pricing a financial derivative involves
setting up a market model, finding a martingale (``fair game") probability
measure for the model from the given asset prices, and using that probability
measure to price the derivative. When the number of underlying assets and/or
the number of market outcomes in the model is large, pricing can be
computationally demanding. We show that a variety of quantum techniques can be
applied to the pricing problem in finance, with a particular focus on
incomplete markets. We discuss three different methods that are distinct from
previous works: they do not use the quantum algorithms for Monte Carlo
estimation and they extract the martingale measure from market variables akin
to bootstrapping, a common practice among financial institutions. The first two
methods are based on a formulation of the pricing problem into a linear program
and are using respectively the quantum zero-sum game algorithm and the quantum
simplex algorithm as subroutines. For the last algorithm, we formalize a new
market assumption milder than market completeness for which quantum linear
systems solvers can be applied with the associated potential for large
speedups. As a prototype use case, we conduct numerical experiments in the
framework of the Black-Scholes-Merton model.
Related papers
- Quantum Risk Analysis of Financial Derivatives [0.3749861135832073]
We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers.
arXiv Detail & Related papers (2024-04-15T18:52:30Z) - An introduction to financial option pricing on a qudit-based quantum
computer [0.0]
The financial sector is anticipated to be one of the first industries to benefit from the increased computational power of quantum computers.
Financial mathematics, and derivative pricing, are not areas quantum physicists are traditionally trained in.
arXiv Detail & Related papers (2023-11-09T17:31:11Z) - Quantum Computational Algorithms for Derivative Pricing and Credit Risk
in a Regime Switching Economy [0.0]
We introduce a class of processes that are both realistic in terms of mimicking financial market risks as well as more amenable to potential quantum computational advantages.
We study algorithms to estimate credit risk and option pricing on a gate-based quantum computer.
arXiv Detail & Related papers (2023-11-01T20:15:59Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Fundamental theorem for quantum asset pricing [0.0]
We consider a financial setting where instead of by classical probabilities the market is described by a pure quantum state.
This setting naturally leads to a new asset class, which we call quantum assets.
Under the assumption that such assets have a price and can be traded, we develop an extended definition of arbitrage to quantify gains without the corresponding risk.
arXiv Detail & Related papers (2022-12-28T13:25:49Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Towards Quantum Advantage in Financial Market Risk using Quantum
Gradient Algorithms [0.716879432974126]
We introduce a quantum algorithm to compute the market risk of financial derivatives.
We show that employing quantum gradient estimation algorithms can deliver a further quadratic advantage in the number of the associated market sensitivities.
arXiv Detail & Related papers (2021-11-24T14:12:43Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Uncertainty quantification using martingales for misspecified Gaussian
processes [52.22233158357913]
We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors.
We construct a confidence sequence (CS) for the unknown function using martingale techniques.
Our CS is statistically valid and empirically outperforms standard GP methods.
arXiv Detail & Related papers (2020-06-12T17:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.