Quantum Risk Analysis of Financial Derivatives
- URL: http://arxiv.org/abs/2404.10088v1
- Date: Mon, 15 Apr 2024 18:52:30 GMT
- Title: Quantum Risk Analysis of Financial Derivatives
- Authors: Nikitas Stamatopoulos, B. David Clader, Stefan Woerner, William J. Zeng,
- Abstract summary: We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers: the first by applying existing ideas from quantum risk analysis to derivative pricing, and the second based on a novel approach using Quantum Signal Processing (QSP). Previous work in the literature has shown that quantum advantage is possible in the context of individual derivative pricing and that advantage can be leveraged in a straightforward manner in the estimation of the VaR and CVaR. The algorithms we introduce in this work aim to provide an additional advantage by encoding the derivative price over multiple market scenarios in superposition and computing the desired values by applying appropriate transformations to the quantum system. We perform complexity and error analysis of both algorithms, and show that while the two algorithms have the same asymptotic scaling the QSP-based approach requires significantly fewer quantum resources for the same target accuracy. Additionally, by numerically simulating both quantum and classical VaR algorithms, we demonstrate that the quantum algorithm can extract additional advantage from a quantum computer compared to individual derivative pricing. Specifically, we show that under certain conditions VaR estimation can lower the latest published estimates of the logical clock rate required for quantum advantage in derivative pricing by up to $\sim 30$x. In light of these results, we are encouraged that our formulation of derivative pricing in the QSP framework may be further leveraged for quantum advantage in other relevant financial applications, and that quantum computers could be harnessed more efficiently by considering problems in the financial sector at a higher level.
Related papers
- An introduction to financial option pricing on a qudit-based quantum
computer [0.0]
The financial sector is anticipated to be one of the first industries to benefit from the increased computational power of quantum computers.
Financial mathematics, and derivative pricing, are not areas quantum physicists are traditionally trained in.
arXiv Detail & Related papers (2023-11-09T17:31:11Z) - Towards practical Quantum Credit Risk Analysis [0.5735035463793008]
CRA (Credit Risk Analysis) quantum algorithm with a quadratic speedup has been introduced.
We propose a new variant of this quantum algorithm with the intent of overcoming some of the most significant limitations.
arXiv Detail & Related papers (2022-12-14T09:25:30Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
We show that a variety of quantum techniques can be applied to the pricing problem in finance.
We discuss three different methods that are distinct from previous works.
arXiv Detail & Related papers (2022-09-19T09:22:01Z) - Pricing multi-asset derivatives by variational quantum algorithms [0.6181093777643575]
We use variational quantum simulation to solve the Black-Scholes equation and compute the derivative price from the inner product between the solution and a probability distribution.
This avoids the measurement bottleneck of the naive approach and would provide quantum speedup even in noisy quantum computers.
arXiv Detail & Related papers (2022-07-04T09:11:15Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Towards Quantum Advantage in Financial Market Risk using Quantum
Gradient Algorithms [0.716879432974126]
We introduce a quantum algorithm to compute the market risk of financial derivatives.
We show that employing quantum gradient estimation algorithms can deliver a further quadratic advantage in the number of the associated market sensitivities.
arXiv Detail & Related papers (2021-11-24T14:12:43Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - A Threshold for Quantum Advantage in Derivative Pricing [4.930045279857117]
We give the first complete resource estimates for useful quantum derivative pricing.
We uncover blocking challenges in known approaches and introduce a new method for quantum derivative pricing.
We find that the benchmark use cases we examine require 8k logical qubits and a T-depth of 54 million.
arXiv Detail & Related papers (2020-12-07T16:07:00Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.