論文の概要: Deep Metric Learning with Chance Constraints
- arxiv url: http://arxiv.org/abs/2209.09060v1
- Date: Mon, 19 Sep 2022 14:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:51:15.312941
- Title: Deep Metric Learning with Chance Constraints
- Title(参考訳): 時間制約によるDeep Metric Learning
- Authors: Yeti Z. Gurbuz, Ogul Can, A. Aydin Alatan
- Abstract要約: ディープ・メトリック・ラーニングは、埋め込み画像におけるペア内/クラス間近接違反の期待損失を実証することを目的としている。
プロキシベースのDMLの最小化は、特定の可能性制約を満たすことを示す。
我々の手法は適用された損失の性能を継続的に改善する。
- 参考スコア(独自算出の注目度): 10.222068641286395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep metric learning (DML) aims to minimize empirical expected loss of the
pairwise intra-/inter- class proximity violations in the embedding image. We
relate DML to feasibility problem of finite chance constraints. We show that
minimizer of proxy-based DML satisfies certain chance constraints, and that the
worst case generalization performance of the proxy-based methods can be
characterized by the radius of the smallest ball around a class proxy to cover
the entire domain of the corresponding class samples, suggesting multiple
proxies per class helps performance. To provide a scalable algorithm as well as
exploiting more proxies, we consider the chance constraints implied by the
minimizers of proxy-based DML instances and reformulate DML as finding a
feasible point in intersection of such constraints, resulting in a problem to
be approximately solved by iterative projections. Simply put, we repeatedly
train a regularized proxy-based loss and re-initialize the proxies with the
embeddings of the deliberately selected new samples. We apply our method with
the well-accepted losses and evaluate on four popular benchmark datasets for
image retrieval. Outperforming state-of-the-art, our method consistently
improves the performance of the applied losses. Code is available at:
https://github.com/yetigurbuz/ccp-dml
- Abstract(参考訳): deep metric learning (dml) は、埋め込み画像におけるペア内/クラス間近接違反の経験的損失を最小限に抑えることを目的としている。
有限確率制約の実現可能性問題とDMLを関連付ける。
本稿では,プロキシベースdmlの最小化が一定の確率制約を満たすこと,また,プロキシベースのメソッドの最悪の場合の一般化性能は,対応するクラスサンプルのドメイン全体をカバーするクラスプロキシ周辺の最小ボール半径によって特徴付けられること,クラスごとの複数のプロキシがパフォーマンスに寄与することを示す。
プロキシベースのdmlインスタンスの最小化による確率制約を考慮し、dmlをそのような制約の交叉において実現可能な点の探索として再構成し、反復射影によって大まかに解決すべき問題を解決できるスケーラブルなアルゴリズムを提供する。
単純に、正規化されたプロキシベースの損失をトレーニングし、意図的に選択された新しいサンプルの埋め込みでプロキシを再初期化する。
本手法は,画像検索に有効な4つのベンチマークデータセットを用いて評価を行う。
我々の手法は, 適用した損失の性能を常に向上させる。
コードは、https://github.com/yetigurbuz/ccp-dmlで入手できる。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Towards Improved Proxy-based Deep Metric Learning via Data-Augmented
Domain Adaptation [15.254782791542329]
本稿では,プロキシに基づくDeep Metric Learningフレームワークを提案する。
本稿では,データ拡張ドメイン適応法(Data-Augmented Domain Adaptation, DADA)を提案する。
一般的なCUB-200-2011を含むベンチマーク実験により,我々の学習アルゴリズムは既存のプロキシ損失を大幅に改善することを示した。
論文 参考訳(メタデータ) (2024-01-01T00:10:58Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Deep Metric Learning with Soft Orthogonal Proxies [1.823505080809275]
本稿では,プロキシにソフト直交性(SO)制約を導入する新しいアプローチを提案する。
提案手法では,DMLの目的と合わせて,画像からコンテキスト特徴を抽出するエンコーダとして,データ効率の良い画像変換器(DeiT)を利用する。
提案手法が最先端手法よりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2023-06-22T17:22:15Z) - A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning [49.999268109518255]
プロキシベースのDeep Metric Learningは、クラス代表者(プロキシ)に画像を埋め込むことで学習する
さらに、プロキシベースのDMLは、クラス内部構造を学ぶのに苦労している。
両問題に対処するために,非等方的確率的プロキシベースDMLを導入する。
論文 参考訳(メタデータ) (2022-07-08T09:34:57Z) - Non-isotropy Regularization for Proxy-based Deep Metric Learning [78.18860829585182]
本稿では,プロキシに基づくDeep Metric Learningのための非等方正則化(mathbbNIR$)を提案する。
これにより、プロキシの周囲のサンプルの非等方分布を明示的に誘導して最適化することが可能になる。
実験では、競争力と最先端のパフォーマンスを達成しながら、$mathbbNIR$の一貫性のある一般化の利点を強調している。
論文 参考訳(メタデータ) (2022-03-16T11:13:20Z) - Adaptive neighborhood Metric learning [184.95321334661898]
適応的近傍距離距離学習(ANML)という新しい距離距離距離距離距離距離学習アルゴリズムを提案する。
ANMLは線形埋め込みと深層埋め込みの両方を学ぶのに使うことができる。
本手法で提案するemphlog-exp平均関数は,深層学習手法をレビューするための新たな視点を与える。
論文 参考訳(メタデータ) (2022-01-20T17:26:37Z) - Masked Proxy Loss For Text-Independent Speaker Verification [27.417484680749784]
本稿では、プロキシベースの関係とペアベースの関係を直接組み込んだMasked Proxy(MP)損失を提案する。
さらに、話者対の硬さを活用するために、MMP損失(Multinomial Masked Proxy)を提案する。
論文 参考訳(メタデータ) (2020-11-09T15:16:29Z) - Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
Proxies [65.92826041406802]
本稿では,グラフ分類の観点から,プロキシベースのディープグラフメトリックラーニング手法を提案する。
複数のグローバルプロキシを利用して、各クラスの元のデータポイントを総括的に近似する。
本研究では, 近接関係を接地トラス・ラベルに従って調整する, 新たな逆ラベル伝搬アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-10-26T14:52:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。