論文の概要: SOCRATES: A Stereo Camera Trap for Monitoring of Biodiversity
- arxiv url: http://arxiv.org/abs/2209.09070v1
- Date: Mon, 19 Sep 2022 15:03:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:50:53.024156
- Title: SOCRATES: A Stereo Camera Trap for Monitoring of Biodiversity
- Title(参考訳): SOCRATES:生物多様性モニタリングのためのステレオカメラ
- Authors: Timm Haucke, Hjalmar K\"uhl, Volker Steinhage
- Abstract要約: 本研究では,高度に最適化されたハードウェアとソフトウェアを特徴とする3Dカメラトラップ手法を提案する。
SOCRATESの総合的な評価は、動物検出の3.23%ドルの改善だけでなく、動物の存在量を推定するための優れた適用性も示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The development and application of modern technology is an essential basis
for the efficient monitoring of species in natural habitats and landscapes to
trace the development of ecosystems, species communities, and populations, and
to analyze reasons of changes. For estimating animal abundance using methods
such as camera trap distance sampling, spatial information of natural habitats
in terms of 3D (three-dimensional) measurements is crucial. Additionally, 3D
information improves the accuracy of animal detection using camera trapping.
This study presents a novel approach to 3D camera trapping featuring highly
optimized hardware and software. This approach employs stereo vision to infer
3D information of natural habitats and is designated as StereO CameRA Trap for
monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES
shows not only a $3.23\%$ improvement in animal detection (bounding box
$\text{mAP}_{75}$) but also its superior applicability for estimating animal
abundance using camera trap distance sampling. The software and documentation
of SOCRATES is provided at https://github.com/timmh/socrates
- Abstract(参考訳): 近代技術の発展と応用は、生態系、種群落、人口の発達を辿り、変化の理由を分析するために、自然の生息地や景観における種の効率的なモニタリングに欠かせない基礎となっている。
カメラトラップ距離サンプリングなどの手法による動物量の推定には,3次元計測による自然生息地の空間情報が必要である。
また,3次元情報により,カメラトラップを用いた動物検出精度が向上する。
本研究では,高度に最適化されたハードウェアとソフトウェアを特徴とする3Dカメラトラップ手法を提案する。
このアプローチでは立体視を用いて自然生息地の3D情報を推測し,生物多様性監視のためのStereO Camera Trapに指定する。
SOCRATESの総合的な評価は、動物検出の改善(バウンディングボックス$\text{mAP}_{75}$)だけでなく、カメラトラップ距離サンプリングによる動物量の推定にも優れていることを示している。
SOCRATESのソフトウェアとドキュメントはhttps://github.com/timmh/socratesで公開されている。
関連論文リスト
- CameraHMR: Aligning People with Perspective [54.05758012879385]
モノクロ画像からの正確な3次元ポーズと形状推定の課題に対処する。
既存のトレーニングデータセットには、擬似基底真理(pGT)を持つ実画像が含まれている。
pGTの精度を向上させる2つの貢献をしている。
論文 参考訳(メタデータ) (2024-11-12T19:12:12Z) - Benchmarking Monocular 3D Dog Pose Estimation Using In-The-Wild Motion Capture Data [17.042955091063444]
単眼画像からの3次元犬のポーズ推定に焦点をあてた新しいベンチマーク分析を提案する。
マルチモーダルなデータセット3DDogs-Labは屋内で撮影され、様々な犬種が通路で群がっている。
3DDogs-Wildは、光学マーカーをインペイントし、被験者を多様な環境に配置するデータセットの帰化バージョンです。
また, 3DDogs-Wild を用いたモデルトレーニングにより, フィールド内データの評価において, 性能が向上することを示した。
論文 参考訳(メタデータ) (2024-06-20T15:33:39Z) - SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
マルチカメラシステムは、360ドル周の知覚を達成するために、しばしば自律走行に使用される。
360ドル(約3万3000円)のカメラセットは、しばしば制限または低品質のオーバーラップ領域を持ち、画像全体に対してマルチビューステレオメソッドを実現する。
重なりの重なりに多視点ステレオ結果を明示的に利用することにより、全画像の深さ推定を強化するステレオガイド深度推定法(SGDE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T02:41:37Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - Collaboration Helps Camera Overtake LiDAR in 3D Detection [49.58433319402405]
カメラのみの3D検出は、LiDARベースの検出システムと比較して、オブジェクトを3D空間にローカライズするための簡単なソリューションを提供する。
提案するコラボレーティブカメラのみの3D検出(CoCa3D)により,エージェントは通信を通じて相互に補完情報を共有できる。
その結果、CoCa3Dは従来のSOTA性能をDAIR-V2Xで44.21%改善し、OPV2V+で30.60%、AP@70でCoPerception-UAVs+で12.59%向上した。
論文 参考訳(メタデータ) (2023-03-23T03:50:41Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36Kは動物のポーズ推定と追跡のための最初の大規模ベンチマークである。
このビデオは、30種の動物から収集・フィルタリングされた2,400のビデオクリップと、各ビデオの15フレームで構成されており、合計で36,000フレームとなっている。
我々は,(1)ドメイン内およびドメイン間移動学習環境下での単一フレームでの動物ポーズ推定,(2)未確認動物に対する種間ドメイン一般化テスト,(3)動物追跡による動物ポーズ推定の3つのモデルについて,いくつかの代表的モデルをベンチマークした。
論文 参考訳(メタデータ) (2022-06-12T07:18:36Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
我々はAcinoSetと呼ばれる野生のフリーランニングチーターの広範なデータセットを提示する。
データセットには、119,490フレームのマルチビュー同期高速ビデオ映像、カメラキャリブレーションファイル、7,588フレームが含まれている。
また、結果の3D軌道、人間チェックされた3D地上真実、およびデータを検査するインタラクティブツールも提供される。
論文 参考訳(メタデータ) (2021-03-24T15:54:11Z) - A first step towards automated species recognition from camera trap
images of mammals using AI in a European temperate forest [0.0]
本稿では,ポーランド bialowieza forest (bf) における哺乳類のカメラトラップ画像の自動ラベリングのためのyolov5アーキテクチャの実装について述べる。
カメラトラップデータは、大規模な野生動物の監視プロジェクトを管理するためのオープンソースアプリケーションであるTRAPPERソフトウェアを使用して整理および調和されました。
提案する画像認識パイプラインは, bfにおける中型・大型哺乳類12種の同定において, 85%f1-scoreの平均精度を達成した。
論文 参考訳(メタデータ) (2021-03-19T22:48:03Z) - Exploiting Depth Information for Wildlife Monitoring [0.0]
深度推定を用いて動物を検知・識別するカメラトラップを用いた自動手法を提案する。
個々の動物を検出・識別するために,いわゆるインスタンスセグメンテーションのための新しい手法D-Mask R-CNNを提案する。
実験により,動物検出における平均精度スコアの改善による追加深度推定の利点が示された。
論文 参考訳(メタデータ) (2021-02-10T18:10:34Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
我々は,異なるパターンの個体の自動検出と認識のための枠組みを開発する。
我々は最近提案したFaster-RCNNオブジェクト検出フレームワークを用いて画像中の動物を効率的に検出する。
我々は,シマウマおよびジャガー画像の認識システムを評価し,他のパターンの種への一般化を示す。
論文 参考訳(メタデータ) (2020-05-06T15:29:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。