DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network
- URL: http://arxiv.org/abs/2209.09124v1
- Date: Tue, 13 Sep 2022 23:22:33 GMT
- Title: DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network
- Authors: Payam Nikdel, Mohammad Mahdavian, Mo Chen
- Abstract summary: We propose a transformer-based generative model for forecasting multiple diverse human motions.
Our model first predicts the pose of the body relative to the hip joint. Then the textitHip Prediction Module predicts the trajectory of the hip movement for each predicted pose frame.
We show that our system outperforms the state-of-the-art in human motion prediction while it can predict diverse multi-motion future trajectories with hip movements.
- Score: 9.247294820004143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion prediction is a fundamental part of many human-robot
applications. Despite the recent progress in human motion prediction, most
studies simplify the problem by predicting the human motion relative to a fixed
joint and/or only limit their model to predict one possible future motion.
While due to the complex nature of human motion, a single output cannot reflect
all the possible actions one can do. Also, for any robotics application, we
need the full human motion including the user trajectory not a 3d pose relative
to the hip joint.
In this paper, we try to address these two issues by proposing a
transformer-based generative model for forecasting multiple diverse human
motions. Our model generates \textit{N} future possible motion by querying a
history of human motion. Our model first predicts the pose of the body relative
to the hip joint. Then the \textit{Hip Prediction Module} predicts the
trajectory of the hip movement for each predicted pose frame. To emphasize on
the diverse future motions we introduce a similarity loss that penalizes the
pairwise sample distance. We show that our system outperforms the
state-of-the-art in human motion prediction while it can predict diverse
multi-motion future trajectories with hip movements
Related papers
- Learning Snippet-to-Motion Progression for Skeleton-based Human Motion
Prediction [14.988322340164391]
Existing Graph Convolutional Networks to achieve human motion prediction largely adopt a one-step scheme.
We observe that human motions have transitional patterns and can be split into snippets representative of each transition.
We propose a snippet-to-motion multi-stage framework that breaks motion prediction into sub-tasks easier to accomplish.
arXiv Detail & Related papers (2023-07-26T07:36:38Z) - SPOTR: Spatio-temporal Pose Transformers for Human Motion Prediction [12.248428883804763]
3D human motion prediction is a research area computation of high significance and a challenge in computer vision.
Traditionally, autogregressive models have been used to predict human motion.
We present a non-autoregressive model for human motion prediction.
arXiv Detail & Related papers (2023-03-11T01:44:29Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - 3D Human motion anticipation and classification [8.069283749930594]
We propose a novel sequence-to-sequence model for human motion prediction and feature learning.
Our model learns to predict multiple future sequences of human poses from the same input sequence.
We show that it takes less than half the number of epochs to train an activity recognition network by using the feature learned from the discriminator.
arXiv Detail & Related papers (2020-12-31T00:19:39Z) - We are More than Our Joints: Predicting how 3D Bodies Move [63.34072043909123]
We train a novel variational autoencoder that generates motions from latent frequencies.
Experiments show that our method produces state-of-the-art results and realistic 3D body animations.
arXiv Detail & Related papers (2020-12-01T16:41:04Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z) - History Repeats Itself: Human Motion Prediction via Motion Attention [81.94175022575966]
We introduce an attention-based feed-forward network that explicitly leverages the observation that human motion tends to repeat itself.
In particular, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences.
Our experiments on Human3.6M, AMASS and 3DPW evidence the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2020-07-23T02:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.