Machine Learning based Extraction of Boundary Conditions from Doppler
Echo Images for Patient Specific Coarctation of the Aorta: Computational
Fluid Dynamics Study
- URL: http://arxiv.org/abs/2209.09139v2
- Date: Tue, 20 Sep 2022 07:55:17 GMT
- Title: Machine Learning based Extraction of Boundary Conditions from Doppler
Echo Images for Patient Specific Coarctation of the Aorta: Computational
Fluid Dynamics Study
- Authors: Vincent Milimo Masilokwa Punabantu, Malebogo Ngoepe, Amit Kumar
Mishra, Thomas Aldersley, John Lawrenson, Liesl Zuhlke
- Abstract summary: This study aims to investigate the application of machine learning (ML) methods to obtain boundary conditions (BCs) from Doppler Echocardiography images.
Our proposed approach combines ML and CFD to model haemodynamic flow within the region of interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose- Coarctation of the Aorta (CoA) patient-specific computational fluid
dynamics (CFD) studies in resource constrained settings are limited by the
available imaging modalities for geometry and velocity data acquisition.
Doppler echocardiography has been seen as a suitable velocity acquisition
modality due to its higher availability and safety. This study aimed to
investigate the application of classical machine learning (ML) methods to
create an adequate and robust approach for obtaining boundary conditions (BCs)
from Doppler Echocardiography images, for haemodynamic modeling using CFD.
Methods- Our proposed approach combines ML and CFD to model haemodynamic flow
within the region of interest. With the key feature of the approach being the
use of ML models to calibrate the inlet and outlet boundary conditions (BCs) of
the CFD model. The key input variable for the ML model was the patients heart
rate as this was the parameter that varied in time across the measured vessels
within the study. ANSYS Fluent was used for the CFD component of the study
whilst the scikit-learn python library was used for the ML component.
Results- We validated our approach against a real clinical case of severe CoA
before intervention. The maximum coarctation velocity of our simulations were
compared to the measured maximum coarctation velocity obtained from the patient
whose geometry is used within the study. Of the 5 ML models used to obtain BCs
the top model was within 5\% of the measured maximum coarctation velocity.
Conclusion- The framework demonstrated that it was capable of taking
variations of the patients heart rate between measurements into account. Thus,
enabling the calculation of BCs that were physiologically realistic when the
heart rate was scaled across each vessel whilst providing a reasonably accurate
solution.
Related papers
- Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models [45.94962431110573]
Camera-based monitoring of vital signs, also known as imaging photoplethysmography (i), has seen applications in driver-monitoring, affective computing, and more.
We introduce methods that combine signal processing and deep learning methods in an inverse problem.
arXiv Detail & Related papers (2025-03-21T16:11:21Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.
We incorporate elements modeling effects to better align simulated data with real-world measurements.
The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
We propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics.
We show that our model produces accurate estimates of the pulsatile velocity and pressure while being agnostic to re-sampling of the source domain.
arXiv Detail & Related papers (2024-10-15T12:24:50Z) - Image2Flow: A hybrid image and graph convolutional neural network for
rapid patient-specific pulmonary artery segmentation and CFD flow field
calculation from 3D cardiac MRI data [0.0]
This study used 135 3D cardiac MRIs from both a public and private dataset.
Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values.
arXiv Detail & Related papers (2024-02-28T11:01:14Z) - Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm [41.25603565852633]
This work presents an efficient and accurate Bayesian framework for high-dimensional LMMs.
The novelty of the approach lies in its partitioning and parameter expansion as well as its fast and scalable computation.
A real-world example is provided using data from a study of lupus in children, where we identify genes and clinical factors associated with a new lupus biomarker and predict the biomarker over time.
arXiv Detail & Related papers (2023-10-18T19:34:56Z) - Voxel2Hemodynamics: An End-to-end Deep Learning Method for Predicting
Coronary Artery Hemodynamics [24.8579242043367]
Local hemodynamic forces play an important role in determining the functional significance of coronary arterial stenosis.
We propose an end-to-end deep learning framework, which could predict the coronary artery hemodynamics from CCTA images.
arXiv Detail & Related papers (2023-05-30T15:12:52Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Physics-informed neural networks for improving cerebral hemodynamics
predictions [0.0]
In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with fast computational fluid dynamics simulations.
Our framework employs in-vivo real-time TCD velocity measurements at several locations in the brain and the baseline vessel cross-sectional areas acquired from 3D images.
We validated the predictions of our model against in-vivo velocity measurements obtained via 4D MRI scans.
arXiv Detail & Related papers (2021-08-25T22:19:41Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.