"Guess what I'm doing": Extending legibility to sequential decision
tasks
- URL: http://arxiv.org/abs/2209.09141v2
- Date: Wed, 27 Dec 2023 12:21:20 GMT
- Title: "Guess what I'm doing": Extending legibility to sequential decision
tasks
- Authors: Miguel Faria, Francisco S. Melo, Ana Paiva
- Abstract summary: We investigate the notion of legibility in sequential decision tasks under uncertainty.
Our proposed approach, dubbed PoL-MDP, is able to handle uncertainty while remaining computationally tractable.
- Score: 7.352593846694083
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we investigate the notion of legibility in sequential decision
tasks under uncertainty. Previous works that extend legibility to scenarios
beyond robot motion either focus on deterministic settings or are
computationally too expensive. Our proposed approach, dubbed PoL-MDP, is able
to handle uncertainty while remaining computationally tractable. We establish
the advantages of our approach against state-of-the-art approaches in several
simulated scenarios of different complexity. We also showcase the use of our
legible policies as demonstrations for an inverse reinforcement learning agent,
establishing their superiority against the commonly used demonstrations based
on the optimal policy. Finally, we assess the legibility of our computed
policies through a user study where people are asked to infer the goal of a
mobile robot following a legible policy by observing its actions.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Predictive Performance Comparison of Decision Policies Under Confounding [32.21041697921289]
We propose a method to compare the predictive performance of decision policies under a variety of modern identification approaches.
Key to our method is the insight that there are regions of uncertainty that we can safely ignore in the policy comparison.
arXiv Detail & Related papers (2024-04-01T01:27:07Z) - PARTNR: Pick and place Ambiguity Resolving by Trustworthy iNteractive
leaRning [5.046831208137847]
We present the PARTNR algorithm that can detect ambiguities in the trained policy by analyzing multiple modalities in the pick and place poses.
PARTNR employs an adaptive, sensitivity-based, gating function that decides if additional user demonstrations are required.
We demonstrate the performance of PARTNR in a table-top pick and place task.
arXiv Detail & Related papers (2022-11-15T17:07:40Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - A Reinforcement Learning Approach to the Stochastic Cutting Stock
Problem [0.0]
We propose a formulation of the cutting stock problem as a discounted infinite-horizon decision process.
An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost.
arXiv Detail & Related papers (2021-09-20T14:47:54Z) - Deceptive Decision-Making Under Uncertainty [25.197098169762356]
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks.
By modeling the agent's behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals.
We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies.
arXiv Detail & Related papers (2021-09-14T14:56:23Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - Continuous Action Reinforcement Learning from a Mixture of Interpretable
Experts [35.80418547105711]
We propose a policy scheme that retains a complex function approxor for its internal value predictions but constrains the policy to have a concise, hierarchical, and human-readable structure.
The main technical contribution of the paper is to address the challenges introduced by this non-differentiable state selection procedure.
arXiv Detail & Related papers (2020-06-10T16:02:08Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.