Witnessing superpositions of causal orders before the process is completed
- URL: http://arxiv.org/abs/2209.09172v3
- Date: Thu, 20 Jun 2024 12:20:27 GMT
- Title: Witnessing superpositions of causal orders before the process is completed
- Authors: Onur Pusuluk, Zafer Gedik, Vlatko Vedral,
- Abstract summary: What is the most general representation of a quantum state at a single point in time?
Can we adapt the current formalisms to situations where the order of quantum operations is coherently or incoherently superposed?
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The questions we raise in this letter are as follows: What is the most general representation of a quantum state at a single point in time? Can we adapt the current formalisms to situations where the order of quantum operations is coherently or incoherently superposed? If so, what are the relations between the state at a given time and the uncertainty in the order of events before and after it? Establishing the relationship between two-state vector formalism and pseudo-density operators, we introduce the notion of a single-time pseudo-state. The tomographic construction of single-time pseudo-states is possible by ideal or weak measurements. We demonstrate that the eigenspectrum obtained from weak measurements enables us to discriminate between some coherent and incoherent superpositions of causal orders in pre- and post-selected systems before the process is completed. Finally, we discuss some possible experimental realizations in existing photonic setups.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Asymptotic behavior of continuous weak measurement and its application
to real-time parameter estimation [4.329298109272387]
The quantum trajectory of weak continuous measurement for the magnetometer is investigated.
We find that the behavior is insensitive to the initial state in the following sense: given one realization, the quantum trajectories starting from arbitrary initial statesally converge to the em same realization-specific em pure state.
arXiv Detail & Related papers (2023-11-03T17:50:45Z) - Logic meets Wigner's Friend (and their Friends) [49.1574468325115]
We take a fresh look at Wigner's Friend thought-experiment and some of its more recent variants and extensions.
We discuss various solutions proposed in the literature, focusing on a few questions.
arXiv Detail & Related papers (2023-07-04T13:31:56Z) - Exploring postselection-induced quantum phenomena with
time-bidirectional state formalism [0.8702432681310401]
A quantum particle's state, called a time-bidirectional state, is equivalent to a joined state of two particles propagating in opposite time directions.
We show how the obtained expressions reduce to known ones in the special cases of no postselection and generalized two-state (density) vectors.
We employ the developed techniques for tracking of a qubit's time-reversal journey in a quantum teleportation protocol realized with a cloud-accessible noisy superconducting quantum processor.
arXiv Detail & Related papers (2022-10-03T12:12:15Z) - Hierarchy of topological order from finite-depth unitaries, measurement
and feedforward [0.0]
Single-site measurements provide a loophole, allowing for finite-time state preparation in certain cases.
We show how this observation imposes a complexity hierarchy on long-range entangled states based on the minimal number of measurement layers required to create the state, which we call "shots"
This hierarchy paints a new picture of the landscape of long-range entangled states, with practical implications for quantum simulators.
arXiv Detail & Related papers (2022-09-13T17:55:36Z) - Quantum Walks with Indefinite Causal Order [4.307704177248648]
In all existing quantum walk models, the assumption about a pre-existing fixed background causal structure is always made and has been taken for granted.
We find that an ideal-shape and fast-spreading uniform distribution can be prepared with our new model.
arXiv Detail & Related papers (2022-02-14T15:07:58Z) - Stroboscopic quantum nondemolition measurements for enhanced
entanglement generation between atomic ensembles [3.0734813171130204]
We develop a measurement operator formalism to handle quantum nondemolition (QND) measurement induced entanglement generation between two atomic gases.
We show several mathematical identities which greatly simplify the state evolution in the projection sequence.
Our formalism does not use the Holstein-Primakoff approximation as is conventionally done, and treats the spins of the atomic gases in an exact way.
arXiv Detail & Related papers (2021-10-18T06:30:20Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.