Asymptotic behavior of continuous weak measurement and its application
to real-time parameter estimation
- URL: http://arxiv.org/abs/2311.02066v1
- Date: Fri, 3 Nov 2023 17:50:45 GMT
- Title: Asymptotic behavior of continuous weak measurement and its application
to real-time parameter estimation
- Authors: Chungwei Lin and Yanting Ma and Dries Sels
- Abstract summary: The quantum trajectory of weak continuous measurement for the magnetometer is investigated.
We find that the behavior is insensitive to the initial state in the following sense: given one realization, the quantum trajectories starting from arbitrary initial statesally converge to the em same realization-specific em pure state.
- Score: 4.329298109272387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The asymptotic quantum trajectory of weak continuous measurement for the
magnetometer is investigated. The magnetometer refers to a setup where the
field-to-estimate and the measured moment are orthogonal, and the quantum state
is governed by the stochastic master equation which, in addition to a
deterministic part, depends on the measurement outcomes. We find that the
asymptotic behavior is insensitive to the initial state in the following sense:
given one realization, the quantum trajectories starting from arbitrary initial
states asymptotically converge to the {\em same} realization-specific {\em
pure} state. For single-qubit systems, we are able to prove this statement
within the framework of Probability Theory by deriving and analyzing an
effective one-dimensional stochastic equation. Numerical simulations strongly
indicate that the same statement holds for multi-qubit systems. Built upon this
conclusion, we consider the problem of real-time parameter estimation whose
feasibility hinges on the insensitivity to the initial state, and explicitly
propose and test a scheme where the quantum state and the field-to-estimate are
updated simultaneously.
Related papers
- Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - On Asymptotic Stability of Non-Demolition Quantum Trajectories with
Measurement Imperfections [0.0]
We consider the question of stability of quantum trajectories undergoing quantum non-demolition imperfect measurement.
We give conditions on the estimated initial state and regions of validity for the estimated parameters so that this convergence is ensured.
arXiv Detail & Related papers (2023-04-05T14:39:36Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Optimality and Complexity in Measured Quantum-State Stochastic Processes [0.0]
We show that optimal prediction requires using an infinite number of temporal features.
We identify the mechanism underlying this complicatedness as generator nonunifilarity.
This makes it possible to quantitatively explore the influence that measurement choice has on a quantum process' degrees of randomness.
arXiv Detail & Related papers (2022-05-08T21:43:06Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - Robust feedback stabilization of N-level quantum spin systems [0.0]
We consider N-level quantum angular momentum systems interacting with electromagnetic fields undergoing continuous-time measurements.
We study the behavior of such a system in presence of a feedback controller.
arXiv Detail & Related papers (2020-07-08T15:52:49Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.