The Ability of Image-Language Explainable Models to Resemble Domain
Expertise
- URL: http://arxiv.org/abs/2209.09310v1
- Date: Mon, 19 Sep 2022 19:09:51 GMT
- Title: The Ability of Image-Language Explainable Models to Resemble Domain
Expertise
- Authors: Petrus Werner, Anna Zapaishchykova, Ujjwal Ratan
- Abstract summary: We study the use of the local surrogate explainability technique to overcome the problem of black-box deep learning models.
We demonstrate that such explanations can serve as helpful feedback in guiding model training for data scientists and machine learning engineers in the field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in vision and language (V+L) models have a promising impact
in the healthcare field. However, such models struggle to explain how and why a
particular decision was made. In addition, model transparency and involvement
of domain expertise are critical success factors for machine learning models to
make an entrance into the field. In this work, we study the use of the local
surrogate explainability technique to overcome the problem of black-box deep
learning models. We explore the feasibility of resembling domain expertise
using the local surrogates in combination with an underlying V+L to generate
multi-modal visual and language explanations. We demonstrate that such
explanations can serve as helpful feedback in guiding model training for data
scientists and machine learning engineers in the field.
Related papers
- VALE: A Multimodal Visual and Language Explanation Framework for Image Classifiers using eXplainable AI and Language Models [0.0]
We propose a novel framework named VALE Visual and Language Explanation.
VALE integrates explainable AI techniques with advanced language models to provide comprehensive explanations.
In this paper, we conduct a pilot study of the VALE framework for image classification tasks.
arXiv Detail & Related papers (2024-08-23T03:02:11Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Deep Learning for Robust and Explainable Models in Computer Vision [0.0]
This thesis presents various approaches that address robustness and explainability challenges for using ML and DL in practice.
This thesis presents developments in computer vision models' robustness and explainability.
In addition to the theoretical developments, this thesis demonstrates several applications of ML and DL in different contexts.
arXiv Detail & Related papers (2024-03-27T15:17:10Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.