Deep Learning for Robust and Explainable Models in Computer Vision
- URL: http://arxiv.org/abs/2403.18674v1
- Date: Wed, 27 Mar 2024 15:17:10 GMT
- Title: Deep Learning for Robust and Explainable Models in Computer Vision
- Authors: Mohammadreza Amirian,
- Abstract summary: This thesis presents various approaches that address robustness and explainability challenges for using ML and DL in practice.
This thesis presents developments in computer vision models' robustness and explainability.
In addition to the theoretical developments, this thesis demonstrates several applications of ML and DL in different contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent breakthroughs in machine and deep learning (ML and DL) research have provided excellent tools for leveraging enormous amounts of data and optimizing huge models with millions of parameters to obtain accurate networks for image processing. These developments open up tremendous opportunities for using artificial intelligence (AI) in the automation and human assisted AI industry. However, as more and more models are deployed and used in practice, many challenges have emerged. This thesis presents various approaches that address robustness and explainability challenges for using ML and DL in practice. Robustness and reliability are the critical components of any model before certification and deployment in practice. Deep convolutional neural networks (CNNs) exhibit vulnerability to transformations of their inputs, such as rotation and scaling, or intentional manipulations as described in the adversarial attack literature. In addition, building trust in AI-based models requires a better understanding of current models and developing methods that are more explainable and interpretable a priori. This thesis presents developments in computer vision models' robustness and explainability. Furthermore, this thesis offers an example of using vision models' feature response visualization (models' interpretations) to improve robustness despite interpretability and robustness being seemingly unrelated in the related research. Besides methodological developments for robust and explainable vision models, a key message of this thesis is introducing model interpretation techniques as a tool for understanding vision models and improving their design and robustness. In addition to the theoretical developments, this thesis demonstrates several applications of ML and DL in different contexts, such as medical imaging and affective computing.
Related papers
- DLBacktrace: A Model Agnostic Explainability for any Deep Learning Models [1.747623282473278]
Deep learning models operate as opaque 'black boxes' with limited transparency in their decision-making processes.
This study addresses the pressing need for interpretability in AI systems, emphasizing its role in fostering trust, ensuring accountability, and promoting responsible deployment in mission-critical fields.
We introduce DLBacktrace, an innovative technique developed by the AryaXAI team to illuminate model decisions across a wide array of domains.
arXiv Detail & Related papers (2024-11-19T16:54:30Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
Masked modeling has emerged as a distinctive approach that involves predicting parts of the original data that are proportionally masked during training.
We elaborate on the details of techniques within masked modeling, including diverse masking strategies, recovering targets, network architectures, and more.
We conclude by discussing the limitations of current techniques and point out several potential avenues for advancing masked modeling research.
arXiv Detail & Related papers (2023-12-31T12:03:21Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
Interpretability is as essential as robustness when we deploy the models to the real world.
Standard models, compared to robust are more susceptible to adversarial attacks, and their learned representations are less meaningful to humans.
arXiv Detail & Related papers (2023-07-04T13:51:55Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.