Exploiting disorder to probe spin and energy hydrodynamics
- URL: http://arxiv.org/abs/2209.09322v2
- Date: Mon, 15 May 2023 16:12:06 GMT
- Title: Exploiting disorder to probe spin and energy hydrodynamics
- Authors: Pai Peng, Bingtian Ye, Norman Y. Yao, Paola Cappellaro
- Abstract summary: We introduce a novel technique that enables the measurement of local correlation functions, down to single-site resolution.
We measure both the spin and energy transport in nuclear spin chains.
Interestingly, when the system is both interacting and (nearly-)integrable, we observe the coexistence of diffusive spin transport with ballistic energy transport.
- Score: 6.655372107268362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An outstanding challenge in large-scale quantum platforms is to
simultaneously achieve strong interactions, giving rise to the most interesting
behaviors, and local addressing -that can probe them. In the context of
correlated phases, local addressing enables one to directly probe the nature of
the system's order. Meanwhile, for out-ofequilibrium dynamics, such addressing
allows the study of quantum information spreading and operator growth. Here, we
introduce a novel technique that enables the measurement of local correlation
functions, down to single-site resolution, despite access to only global
controls. Our approach leverages the intrinsic disorder present in a
solid-state spin ensemble to dephase the nonlocal components of the correlation
function. Utilizing this toolset, we measure both the spin and energy transport
in nuclear spin chains. By tuning the interaction Hamiltonian via Floquet
engineering, we investigate the cross-over between ballistic and diffusive
hydrodynamics. Interestingly, when the system is both interacting and
(nearly-)integrable, we observe the coexistence of diffusive spin transport
with ballistic energy transport.
Related papers
- Nonreciprocal synchronization of active quantum spins [0.0]
We present a model of two species of quantum spins that interact in an antagonistic nonreciprocal way.
We show that nonreciprocal interactions deeply affect their synchronization dynamics.
Our work opens a new avenue to explore nonreciprocal interactions in active quantum matter.
arXiv Detail & Related papers (2024-06-05T15:12:34Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Stabilization of Hubbard-Thouless pumps through nonlocal fermionic
repulsion [0.0]
Thouless pumping represents a powerful concept to probe quantized topological invariants in quantum systems.
We show that sufficiently large intersite interactions allow for an interaction-induced recovery of Thouless pumps.
Our results provide a new mechanism to stabilize Thouless pumps in interacting quantum systems.
arXiv Detail & Related papers (2023-08-25T13:34:42Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.