Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions
- URL: http://arxiv.org/abs/2112.11521v4
- Date: Thu, 3 Aug 2023 11:09:46 GMT
- Title: Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions
- Authors: Pradip Laha
- Abstract summary: We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The possibility of exploiting heterogeneous quantum systems to high
precision, for storing, processing, and transmitting information makes them
ideal candidates for multi-tasking purposes in quantum communication.
Appropriate quantum systems involving a judicious choice of interactions which
augment each other, are potentially useful for probing deep into quantum
regimes. Here, we make use of one such hybrid bipartite quantum model, with one
subsystem made of a pair of qubits and another comprising a pair of
oscillators, to study the entanglement dynamics, and the entanglement transfer
between discrete and continuous variables. Our basic model is the standard
double Jaynes-Cummings system, which is known to support both entanglement
transfer and entanglement sudden death, under suitable conditions. In this
work, we generalise this model to include further experimentally relevant
interactions, such as the beamsplitter-type exchange interaction between the
oscillators, and dipole-dipole and Ising-type interactions between the qubits.
The manner in which various interactions and initial oscillator states affect
the entanglement dynamics, is examined theoretically, for generic experimental
conditions. Using exact analytical solutions, we show that compared to the
beamsplitter or dipole-dipole interaction, the Ising interaction can have a
significant positive impact on entanglement sudden death and birth, and
postponement of the onset of these phenomena, apart from producing substantial
reduction in the time duration of the death.
Related papers
- On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Cavity-Mediated Collective Momentum-Exchange Interactions [0.0]
We realize for the first time momentum-exchange interactions in which atoms exchange their momentum states via collective emission and absorption of photons from a common cavity mode.
The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer, which is useful for entanglement generation.
arXiv Detail & Related papers (2023-04-03T23:12:58Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Integrated quantum polariton interferometry [0.0]
We show that integrated circuits of single polaritons can be arranged to build deterministic quantum logic gates.
Our results introduce a novel paradigm for the development of practical quantum polaritonic devices.
arXiv Detail & Related papers (2021-07-28T14:09:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - Quantum amplification of boson-mediated interactions [0.0]
We experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential.
The technique can be used in any quantum platform where parametric modulation of the boson channel is possible.
arXiv Detail & Related papers (2020-09-29T23:22:55Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.