論文の概要: Visible-Infrared Person Re-Identification Using Privileged Intermediate
Information
- arxiv url: http://arxiv.org/abs/2209.09348v1
- Date: Mon, 19 Sep 2022 21:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 17:51:26.886223
- Title: Visible-Infrared Person Re-Identification Using Privileged Intermediate
Information
- Title(参考訳): 特権付き中間情報を用いた可視赤外人物再同定
- Authors: Mahdi Alehdaghi, Arthur Josi, Rafael M. O. Cruz and Eric Granger
- Abstract要約: クロスモーダルな人物再識別(ReID)は、RGBとIRモダリティ間のデータ分散の大きなドメインシフトのために困難である。
本稿では2つのメインドメイン間のブリッジとして機能する中間仮想ドメインを作成するための新しいアプローチを提案する。
我々は、深いReIDモデルをトレーニングするための追加情報を提供する、可視領域と赤外線領域間の画像を生成する新しい手法を考案した。
- 参考スコア(独自算出の注目度): 10.816003787786766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visible-infrared person re-identification (ReID) aims to recognize a same
person of interest across a network of RGB and IR cameras. Some deep learning
(DL) models have directly incorporated both modalities to discriminate persons
in a joint representation space. However, this cross-modal ReID problem remains
challenging due to the large domain shift in data distributions between RGB and
IR modalities. % This paper introduces a novel approach for a creating
intermediate virtual domain that acts as bridges between the two main domains
(i.e., RGB and IR modalities) during training. This intermediate domain is
considered as privileged information (PI) that is unavailable at test time, and
allows formulating this cross-modal matching task as a problem in learning
under privileged information (LUPI). We devised a new method to generate images
between visible and infrared domains that provide additional information to
train a deep ReID model through an intermediate domain adaptation. In
particular, by employing color-free and multi-step triplet loss objectives
during training, our method provides common feature representation spaces that
are robust to large visible-infrared domain shifts. % Experimental results on
challenging visible-infrared ReID datasets indicate that our proposed approach
consistently improves matching accuracy, without any computational overhead at
test time. The code is available at:
\href{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}
- Abstract(参考訳): ReID(Visible-infrared person re-identification)は、RGBとIRカメラのネットワークを通して、同じ人の関心事を認識することを目的としている。
いくつかのディープラーニング(dl)モデルは、共同表現空間内の人を判別するために両方のモダリティを直接組み込んだ。
しかし、このクロスモーダルなReID問題は、RGBとIRモダリティ間のデータ分散の大きなドメインシフトのため、依然として困難である。
% トレーニング中の2つのメインドメイン(RGBとIRモダリティ)間のブリッジとして機能する中間仮想ドメインを作成するための新しいアプローチを提案する。
この中間領域は、テスト時に利用できない特権情報(PI)と見なされ、特権情報(LUPI)下での学習における問題として、このクロスモーダルマッチングタスクを定式化することができる。
中間領域適応により深層reidモデルを訓練するための付加情報を提供する可視領域と赤外線領域間の画像を生成する新しい手法を考案した。
特に,トレーニング中に無色多段三重項損失目標を用いることにより,大きな可視赤外領域シフトに対してロバストな共通特徴表現空間を提供する。
5%の可視赤外ReIDデータセットによる実験結果から,提案手法はテスト時の計算オーバーヘッドを伴わず,一致精度を常に向上することが示された。
コードは以下の通りである。 \href{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}
関連論文リスト
- Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Frequency Domain Nuances Mining for Visible-Infrared Person
Re-identification [75.87443138635432]
既存の手法は主に、識別周波数情報を無視しながら空間情報を利用する。
本稿では,周波数領域情報を対象とした周波数領域Nuances Mining(FDNM)手法を提案する。
本手法は,SYSU-MM01データセットにおいて,Ran-1精度が5.2%,mAPが5.8%向上する。
論文 参考訳(メタデータ) (2024-01-04T09:19:54Z) - Adaptive Generation of Privileged Intermediate Information for
Visible-Infrared Person Re-Identification [11.93952924941977]
本稿では,Privileged Intermediate Information Trainingアプローチの適応生成について紹介する。
AGPI2は、VとIのモダリティ間で識別情報をブリッジする仮想ドメインを適応して生成するために導入された。
V-I ReIDを用いた実験の結果,AGPI2は余分な計算資源を使わずにマッチング精度を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-07-06T18:08:36Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
本稿では,CIR-Netと呼ばれる畳み込みニューラルネットワーク(CNN)モデルを提案する。
我々のネットワークは、定性的かつ定量的に最先端の塩分濃度検出器より優れています。
論文 参考訳(メタデータ) (2022-10-06T11:59:19Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Towards Homogeneous Modality Learning and Multi-Granularity Information
Exploration for Visible-Infrared Person Re-Identification [16.22986967958162]
Visible-infrared person re-identification (VI-ReID) は、可視・赤外線カメラビューを介して人物画像の集合を検索することを目的とした、困難かつ必須の課題である。
従来の手法では, GAN (Generative Adversarial Network) を用いて, モーダリティ・コンシデント・データを生成する手法が提案されている。
そこで本研究では、視線外デュアルモード学習をグレーグレー単一モード学習問題として再構成する、統一されたダークラインスペクトルであるAligned Grayscale Modality (AGM)を用いて、モード間マッチング問題に対処する。
論文 参考訳(メタデータ) (2022-04-11T03:03:19Z) - CMTR: Cross-modality Transformer for Visible-infrared Person
Re-identification [38.96033760300123]
可視赤外人物再識別のための相互モダリティトランスフォーマー法(CMTR)
我々は,モダリティの情報をエンコードするために,トークン埋め込みと融合した新しいモダリティ埋め込みを設計する。
提案するCMTRモデルの性能は,既存のCNN方式をはるかに上回っている。
論文 参考訳(メタデータ) (2021-10-18T03:12:59Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Cross-Spectrum Dual-Subspace Pairing for RGB-infrared Cross-Modality
Person Re-Identification [15.475897856494583]
従来の人物識別はRGBカラー画像しか扱えないが、暗い条件下では失敗する。
RGB赤外線ReID(Infrared-Visible ReID、Visible-Thermal ReIDとも呼ばれる)が提案されている。
本稿では, 新たなマルチスペクトル画像生成手法を提案し, 生成したサンプルを用いて, ネットワークの識別情報検索を支援する。
論文 参考訳(メタデータ) (2020-02-29T09:01:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。