論文の概要: Topological data analysis on noisy quantum computers
- arxiv url: http://arxiv.org/abs/2209.09371v4
- Date: Tue, 19 Mar 2024 20:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 23:26:53.497451
- Title: Topological data analysis on noisy quantum computers
- Title(参考訳): 雑音量子コンピュータの位相データ解析
- Authors: Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh,
- Abstract要約: トポロジカルデータ解析(TDA)は,高次元データの複雑で価値の高い形状関連要約を抽出する強力な手法である。
TDA計算のための古典的アルゴリズムの計算要求は極端であり、高次特性に対してはすぐに非現実的になる。
本稿では,高次元古典データに適用可能なエンドツーエンド量子機械学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.975008559320875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data. However, the computational demands of classical algorithms for computing TDA are exorbitant, and quickly become impractical for high-order characteristics. Quantum computers offer the potential of achieving significant speedup for certain computational problems. Indeed, TDA has been purported to be one such problem, yet, quantum computing algorithms proposed for the problem, such as the original Quantum TDA (QTDA) formulation by Lloyd, Garnerone and Zanardi, require fault-tolerance qualifications that are currently unavailable. In this study, we present NISQ-TDA, a fully implemented end-to-end quantum machine learning algorithm needing only a short circuit-depth, that is applicable to high-dimensional classical data, and with provable asymptotic speedup for certain classes of problems. The algorithm neither suffers from the data-loading problem nor does it need to store the input data on the quantum computer explicitly. The algorithm was successfully executed on quantum computing devices, as well as on noisy quantum simulators, applied to small datasets. Preliminary empirical results suggest that the algorithm is robust to noise.
- Abstract(参考訳): トポロジカルデータ解析(TDA)は,高次元データの複雑で価値の高い形状関連要約を抽出する強力な手法である。
しかし、TDA計算における古典的アルゴリズムの計算要求は極端であり、高次特性に対してはすぐに非現実的になる。
量子コンピュータは、特定の計算問題に対して大きなスピードアップを達成する可能性を秘めている。
実際、TDAはそのような問題の1つとして報告されているが、ロイド、ガーネロン、ザナルディによる量子TDA(QTDA)の定式化のような量子コンピューティングアルゴリズムでは、現在利用できないフォールトトレランスの資格が必要となる。
本研究では,高次元古典データに適用可能な短い回路深度のみを必要とする完全実装のエンドツーエンド量子機械学習アルゴリズムであるNISQ-TDAについて述べる。
このアルゴリズムは、データローディングの問題に悩まされず、入力データを量子コンピュータに明示的に格納する必要もない。
このアルゴリズムは、小さなデータセットに適用された量子コンピューティングデバイスだけでなく、ノイズの多い量子シミュレータ上でもうまく実行された。
予備的な経験的結果は、アルゴリズムがノイズに対して堅牢であることを示唆している。
関連論文リスト
- Identifying Bottlenecks of NISQ-friendly HHL algorithms [0.0]
NISQ適応反復QPEとそのHHLアルゴリズムの雑音耐性について検討する。
その結果,Qiskit readout や M Three readout package のようなノイズ低減技術は,ここでテストした小さなインスタンスにおいても,結果の回復には不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-10T14:11:27Z) - Classification of the Fashion-MNIST Dataset on a Quantum Computer [0.0]
古典的なデータを量子コンピュータに符号化する従来の方法は、コストがかかりすぎて、現在のハードウェアで実現可能な実験の規模が制限される。
現在利用可能な量子コンピュータのネイティブゲートセットとトポロジに適合する回路を用いて、符号化されたデータを作成する改良された変分アルゴリズムを提案する。
我々は、現在の量子コンピュータibmq-kolkata上で、符号化データセットに基づいて訓練された単純な量子変分分類器をデプロイし、適度な精度を達成する。
論文 参考訳(メタデータ) (2024-03-04T19:01:14Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Solving various NP-Hard problems using exponentially fewer qubits on a
Quantum Computer [0.0]
NPハード問題は、一般時間アルゴリズムで正確に解けるとは考えられていない。
本稿では,問題のサイズに応じて対数的にスケールする独自手法を構築した。
これらのアルゴリズムは、100以上のノードのグラフサイズを持つ量子シミュレータと、256のグラフサイズまでの実際の量子コンピュータでテストされる。
論文 参考訳(メタデータ) (2023-01-17T16:03:33Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
トポロジカルデータ解析のための量子アルゴリズムは、古典的手法よりも指数関数的に有利である。
我々は、量子コンピュータにおいても、TDA(ベッチ数の推定)の中心的なタスクが難解であることを示します。
我々は、入力データが単純さの仕様として与えられると、指数的量子優位性を取り戻すことができると論じる。
論文 参考訳(メタデータ) (2022-09-28T17:53:25Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Noisy intermediate-scale quantum (NISQ) algorithms [0.5325753548715747]
整数因数分解や非構造データベース探索のような効率よく解くことができる普遍的フォールトトレラント量子コンピュータは、誤り率の低い数百万の量子ビットと長いコヒーレンス時間を必要とする。
このようなデバイスの実現に向けた実験的進歩は数十年の研究を要する可能性があるが、ノイズの多い中規模量子コンピュータ(NISQ)はすでに存在する。
これらのコンピュータは数百のうるさいクビットで構成されている。
誤り訂正されていないキュービットは、限られたコヒーレンス時間で不完全な操作を実行する。
論文 参考訳(メタデータ) (2021-01-21T05:27:34Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。