論文の概要: Machine Learning-Augmented Optimization of Large Bilevel and Two-stage Stochastic Programs: Application to Cycling Network Design
- arxiv url: http://arxiv.org/abs/2209.09404v3
- Date: Mon, 1 Apr 2024 02:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:21:15.334612
- Title: Machine Learning-Augmented Optimization of Large Bilevel and Two-stage Stochastic Programs: Application to Cycling Network Design
- Title(参考訳): 大規模2段階確率プログラムの機械学習による最適化:サイクリングネットワーク設計への応用
- Authors: Timothy C. Y. Chan, Bo Lin, Shoshanna Saxe,
- Abstract要約: 我々は、多数の独立したフォロワーを持つバイレベルプログラムを解くための機械学習アプローチを提案する。
機械学習モデルを用いて、アンサンプされたフォロワーの客観的な価値を推定する。
現在の慣行と比較して、我々の手法は輸送距離を19.2%改善し、1800万ドルのコスト削減につながる可能性がある。
- 参考スコア(独自算出の注目度): 4.092552518040045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by a cycling infrastructure planning application, we present a machine learning approach to solving bilevel programs with a large number of independent followers, which as a special case includes two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. Unlike existing approaches, we embed machine learning model training into the optimization problem, which allows us to employ follower features that cannot be represented using leader decisions. We prove bounds on the optimality gap of the generated leader decision as measured by the original objective that considers the full follower set. We develop follower sampling algorithms to tighten the bounds and a representation learning approach to learn follower features, which are used as inputs to our machine learning model. Through numerical studies, we show that our approach generates leader decisions of higher quality compared to baselines. Finally, we perform a real-world case study in Toronto, Canada, where we solve a cycling network design problem with over one million followers. Compared to the current practice, our approach improves a transportation metric by 19.2% and can lead to a potential cost saving of $18M.
- Abstract(参考訳): サイクリング・インフラストラクチャ・プランニング・アプリケーションによってモチベーションを得て,2段階確率計画を含む,多数の独立したフォロワーを持つバイレベル・プログラムを解くための機械学習手法を提案する。
本研究では、フォロワーのサンプル部分集合を明示的に考慮し、機械学習モデルを用いてアンサンプされたフォロワーの客観的値を推定する最適化モデルを提案する。
既存のアプローチとは異なり、機械学習モデルのトレーニングを最適化問題に組み込むことで、リーダの決定で表現できないフォローア機能を採用できます。
我々は、生成したリーダー決定の最適性ギャップについて、全従者集合を考慮した当初の目的によって測定された境界を証明した。
我々は,従者サンプリングアルゴリズムを開発し,従者の特徴を学習するための表現学習手法を開発し,機械学習モデルへの入力として利用する。
数値解析により,本手法はベースラインよりも高い品質のリーダー決定を導出することを示す。
最後に、カナダのトロントで実際のケーススタディを行い、100万人以上のフォロワーでサイクリングネットワークの設計問題を解決する。
現在の慣行と比較して、我々の手法は輸送距離を19.2%改善し、1800万ドルのコスト削減につながる可能性がある。
関連論文リスト
- Graph Reinforcement Learning for Network Control via Bi-Level
Optimization [37.00510744883984]
我々は、データ駆動戦略がこのプロセスを自動化し、最適性を損なうことなく効率的なアルゴリズムを学習できると主張している。
我々は、強化学習のレンズを通してネットワーク制御の問題を提示し、幅広い問題に対処するグラフネットワークベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T03:20:22Z) - A hybrid deep-learning-metaheuristic framework for bi-level network
design problems [2.741266294612776]
本研究では,道路ネットワーク設計問題(NDP)のための双方向アーキテクチャを用いたハイブリッドディープラーニング・メタヒューリスティックフレームワークを提案する。
我々は、ユーザ均衡(UE)トラフィック割り当て問題の解を近似するために、グラフニューラルネットワーク(GNN)を訓練する。
遺伝的アルゴリズム(GA)の適合度関数評価の計算にトレーニングモデルを用いて,NDPの解を近似する。
論文 参考訳(メタデータ) (2023-03-10T16:23:56Z) - Probabilistic Bilevel Coreset Selection [24.874967723659022]
本稿では,各トレーニングサンプルの確率的重みを学習することにより,コアセット選択の連続確率的2レベル定式化を提案する。
暗黙的な微分の問題を伴わずに、偏りのない政策勾配を経由し、二段階最適化問題に対する効率的な解法を開発する。
論文 参考訳(メタデータ) (2023-01-24T09:37:00Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
探索の効率を顕著に向上させると考えられる,インスタンス依存のプロキシを学習することを提案する。
私たちが最初に学ぶことを提案するプロキシは、補正係数、すなわち、インスタンスに依存しないコスト・ツー・ゴの見積もりと完璧な見積もりの比率である。
第2のプロキシはパス確率であり、グリッドセルが最も短いパスに横たわっている可能性を示している。
論文 参考訳(メタデータ) (2022-12-22T14:26:11Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTRは、タスク表現とカリキュラム学習を2段階最適化に分離する、新しいカリキュラム学習アルゴリズムである。
CLUTRは、CarRacingとナビゲーション環境における一般化とサンプル効率の観点から、原則的かつ一般的なUED手法であるPAIREDよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T01:45:29Z) - Communication-Efficient Robust Federated Learning with Noisy Labels [144.31995882209932]
フェデレーテッド・ラーニング(FL)は、分散した位置データの上で、将来性のあるプライバシ保護機械学習パラダイムである。
FLにおける雑音ラベルの効果を緩和する学習に基づく再重み付け手法を提案する。
提案手法は,複数の実世界のデータセットにおいて,各種ベースラインと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2022-06-11T16:21:17Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
具体的には、まず、決定論的勾配に基づくアルゴリズムであるFedBiOを提案する。
FedBiOの複雑性は$O(epsilon-1.5)$である。
本アルゴリズムは数値実験において,他のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-03T16:40:22Z) - Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical
Guarantee [110.16183719936629]
本稿では,現行の定式化よりも高速に収束する2レベルモデルを提案する。
実験結果から,本モデルが現行のバイレベルモデルよりも大きなマージンで優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-09-01T20:52:57Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。