PolyMPCNet: Towards ReLU-free Neural Architecture Search in Two-party
Computation Based Private Inference
- URL: http://arxiv.org/abs/2209.09424v1
- Date: Tue, 20 Sep 2022 02:47:37 GMT
- Title: PolyMPCNet: Towards ReLU-free Neural Architecture Search in Two-party
Computation Based Private Inference
- Authors: Hongwu Peng, Shanglin Zhou, Yukui Luo, Shijin Duan, Nuo Xu, Ran Ran,
Shaoyi Huang, Chenghong Wang, Tong Geng, Ang Li, Wujie Wen, Xiaolin Xu and
Caiwen Ding
- Abstract summary: Secure multi-party computation (MPC) has been discussed, to enable the privacy-preserving deep learning (DL) computation.
MPCs often come at very high computation overhead, and potentially prohibit their popularity in large scale systems.
In this work, we develop a systematic framework, PolyMPCNet, of joint overhead reduction of MPC comparison protocol and hardware acceleration.
- Score: 23.795457990555878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth and deployment of deep learning (DL) has witnessed emerging
privacy and security concerns. To mitigate these issues, secure multi-party
computation (MPC) has been discussed, to enable the privacy-preserving DL
computation. In practice, they often come at very high computation and
communication overhead, and potentially prohibit their popularity in large
scale systems. Two orthogonal research trends have attracted enormous interests
in addressing the energy efficiency in secure deep learning, i.e., overhead
reduction of MPC comparison protocol, and hardware acceleration. However, they
either achieve a low reduction ratio and suffer from high latency due to
limited computation and communication saving, or are power-hungry as existing
works mainly focus on general computing platforms such as CPUs and GPUs.
In this work, as the first attempt, we develop a systematic framework,
PolyMPCNet, of joint overhead reduction of MPC comparison protocol and hardware
acceleration, by integrating hardware latency of the cryptographic building
block into the DNN loss function to achieve high energy efficiency, accuracy,
and security guarantee. Instead of heuristically checking the model sensitivity
after a DNN is well-trained (through deleting or dropping some non-polynomial
operators), our key design principle is to em enforce exactly what is assumed
in the DNN design -- training a DNN that is both hardware efficient and secure,
while escaping the local minima and saddle points and maintaining high
accuracy. More specifically, we propose a straight through polynomial
activation initialization method for cryptographic hardware friendly trainable
polynomial activation function to replace the expensive 2P-ReLU operator. We
develop a cryptographic hardware scheduler and the corresponding performance
model for Field Programmable Gate Arrays (FPGA) platform.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
We introduce a novel algorithm-architecture co-design approach that accelerates transformers using head sparsity, block sparsity and approximation opportunities to reduce computations in attention and reduce memory access.
With the observation of the huge redundancy in attention scores and attention heads, we propose a novel integer-based row-balanced block pruning to prune unimportant blocks in the attention matrix at run time.
Also propose integer-based head pruning to detect and prune unimportant heads at an early stage at run time.
arXiv Detail & Related papers (2024-07-17T11:15:16Z) - RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation
Based Private Inference [17.299835585861747]
We introduce RRNet, a framework that aims to jointly reduce the overhead of MPC comparison protocols and accelerate computation through hardware acceleration.
Our approach integrates the hardware latency of cryptographic building blocks into the DNN loss function, resulting in improved energy efficiency, accuracy, and security guarantees.
arXiv Detail & Related papers (2023-02-05T04:02:13Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
We propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and online generated row-based or tile-based dropout patterns.
We then develop a SGD-based Search Algorithm that produces the distribution of row-based or tile-based dropout patterns to compensate for the potential accuracy loss.
We also propose the sensitivity-aware dropout method to dynamically drop the input feature maps based on their sensitivity so as to achieve greater forward and backward training acceleration.
arXiv Detail & Related papers (2022-03-11T01:32:03Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
Computation [26.67099154998755]
Multi-party computation (MPC) is a branch of cryptography where multiple non-colluding parties execute a protocol to securely compute a function.
We study training and inference of neural networks under the MPC setup.
We show that both of the approaches enjoy strong theoretical motivations and efficient computation under the MPC setup.
arXiv Detail & Related papers (2021-10-28T21:15:11Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.