論文の概要: A Few-shot Approach to Resume Information Extraction via Prompts
- arxiv url: http://arxiv.org/abs/2209.09450v2
- Date: Sat, 20 May 2023 03:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 05:46:49.353570
- Title: A Few-shot Approach to Resume Information Extraction via Prompts
- Title(参考訳): プロンプトによる残量情報抽出のための簡単なアプローチ
- Authors: Chengguang Gan, Tatsunori Mori
- Abstract要約: 本稿では,情報抽出を再開するために即時学習を適用する。
手作業でテンプレートを作成し、テキストを再開するように調整します。
本報告では,特定のアプリケーションに対して,言語処理を行うためのルールであるMKV(Manual Knowledgeable Verbalizer)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt learning's fine-tune performance on text classification tasks has
attracted the NLP community. This paper applies it to resume information
extraction, improving existing methods for this task. We created manual
templates and verbalizers tailored to resume texts and compared the performance
of Masked Language Model (MLM) and Seq2Seq PLMs. Also, we enhanced the
verbalizer design for Knowledgeable Prompt-tuning, contributing to prompt
template design across NLP tasks. We present the Manual Knowledgeable
Verbalizer (MKV), a rule for constructing verbalizers for specific
applications. Our tests show that MKV rules yield more effective, robust
templates and verbalizers than existing methods. Our MKV approach resolved
sample imbalance, surpassing current automatic prompt methods. This study
underscores the value of tailored prompt learning for resume extraction,
stressing the importance of custom-designed templates and verbalizers.
- Abstract(参考訳): テキスト分類タスクにおけるプロンプト学習の微調整性能はNLPコミュニティを惹きつけている。
本論文は,情報抽出の再開に応用し,既存の手法を改善した。
テキストの再生に適した手動テンプレートと動詞化器を作成し,Masked Language Model(MLM)とSeq2Seq PLMの性能を比較した。
また,ナレッジブル・プロンプトチューニングの言語化設計も強化し,NLPタスク間のテンプレート設計の促進に寄与した。
本報告では,特定のアプリケーションに対して,言語処理を行うためのルールであるMKV(Manual Knowledgeable Verbalizer)を提案する。
実験の結果,MKVルールは既存の手法よりも効果的で頑健なテンプレートや動詞化ツールが得られることがわかった。
我々のMKVアプローチは、現在の自動プロンプト法を超越してサンプル不均衡を解消した。
本研究は, カスタムデザインテンプレートと発声器の重要性を強調し, 抽出再開のための調整済みプロンプト学習の価値を強調した。
関連論文リスト
- Optimising Hard Prompts with Few-Shot Meta-Prompting [0.0]
文脈的プロンプトは、文書や対話の形式でコンテキストを含み、Large Language Model (LLM)への自然言語命令も含む。
コンテキストを判断すると、プロンプトのテンプレートとして機能する。
本稿では,既存のプロンプトテンプレートのセットからLCMを用いて,そのコンテキストを明らかにすることなく,より優れたテンプレートを生成するための反復的手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T07:02:57Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPromptは、数発のテキスト分類タスクをテキストペア関連性推定タスクに書き換えることで、言語設計の難易度を緩和する。
広範に使われている3つのテキスト分類データセットを4つのショット・セッティングで実験する。
結果から,MetricPromptは,手動弁証法や自動弁証法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T06:51:35Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
我々は、AuT-Fewが最先端の数ショット学習方法より優れていることを示す。
AuT-Few は RAFT few-shot ベンチマークにおいて,データセット間で最高のランク付け手法であることを示す。
論文 参考訳(メタデータ) (2023-05-21T21:50:27Z) - Towards Unified Prompt Tuning for Few-shot Text Classification [47.71344780587704]
We present the Unified Prompt Tuning (UPT) framework that to improve few-shot text classification for BERT-style model。
UPTでは、異なるNLPタスク間での協調学習のために、新しいパラダイムであるPrompt-Options-Verbalizerを提案する。
また, PLMの一般化能力を向上させるために, 知識向上型選択マスケッド言語モデリングという自己教師型タスクを設計する。
論文 参考訳(メタデータ) (2022-05-11T07:40:45Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z) - Context-Tuning: Learning Contextualized Prompts for Natural Language
Generation [52.835877179365525]
自然言語生成のための微調整PLMに対して,Context-Tuningと呼ばれる新しい連続的プロンプト手法を提案する。
まず、入力テキストに基づいてプロンプトを導出し、PLMから有用な知識を抽出して生成する。
第二に、生成したテキストの入力に対する関連性をさらに高めるために、連続的な逆プロンプトを用いて自然言語生成のプロセスを洗練する。
論文 参考訳(メタデータ) (2022-01-21T12:35:28Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
完全教師付き,少数ショット,ゼロショットシナリオにおける微粒化エンティティタイピングに対するプロンプトラーニングの適用について検討する。
本稿では,エンティティタイプの情報を自動的に要約するために,プロンプトラーニングにおける分布レベルの最適化を行う自己教師型戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T09:39:35Z) - AutoPrompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts [46.03503882865222]
AutoPromptは、勾配誘導検索に基づいて、さまざまなタスクセットのプロンプトを作成する自動メソッドである。
マスク付き言語モデル(MLM)は,感情分析や自然言語推論を,追加パラメータや微調整を伴わずに行う能力を持つことを示す。
論文 参考訳(メタデータ) (2020-10-29T22:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。