論文の概要: CoV-TI-Net: Transferred Initialization with Modified End Layer for
COVID-19 Diagnosis
- arxiv url: http://arxiv.org/abs/2209.09556v1
- Date: Tue, 20 Sep 2022 08:52:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 19:21:58.139953
- Title: CoV-TI-Net: Transferred Initialization with Modified End Layer for
COVID-19 Diagnosis
- Title(参考訳): CoV-TI-Net:COVID-19診断のためのエンド層変更による移行初期化
- Authors: Sadia Khanam, Mohammad Reza Chalak Qazani, Subrota Kumar Mondal, H M
Dipu Kabir, Abadhan S. Sabyasachi, Houshyar Asadi, Keshav Kumar, Farzin
Tabarsinezhad, Shady Mohamed, Abbas Khorsavi, Saeid Nahavandi
- Abstract要約: 転送学習は比較的新しい学習手法であり、少ない計算で優れた性能を達成するために多くの分野で採用されている。
本研究では,MNISTデータセットにPyTorch事前学習モデル(VGG19_bnとWideResNet -101)を適用した。
提案したモデルはKaggleのノートブックで開発、検証され、計算時間を要さずに99.77%の精度に達した。
- 参考スコア(独自算出の注目度): 5.546855806629448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes transferred initialization with modified fully connected
layers for COVID-19 diagnosis. Convolutional neural networks (CNN) achieved a
remarkable result in image classification. However, training a high-performing
model is a very complicated and time-consuming process because of the
complexity of image recognition applications. On the other hand, transfer
learning is a relatively new learning method that has been employed in many
sectors to achieve good performance with fewer computations. In this research,
the PyTorch pre-trained models (VGG19\_bn and WideResNet -101) are applied in
the MNIST dataset for the first time as initialization and with modified fully
connected layers. The employed PyTorch pre-trained models were previously
trained in ImageNet. The proposed model is developed and verified in the Kaggle
notebook, and it reached the outstanding accuracy of 99.77% without taking a
huge computational time during the training process of the network. We also
applied the same methodology to the SIIM-FISABIO-RSNA COVID-19 Detection
dataset and achieved 80.01% accuracy. In contrast, the previous methods need a
huge compactional time during the training process to reach a high-performing
model. Codes are available at the following link:
github.com/dipuk0506/SpinalNet
- Abstract(参考訳): 本稿では、新型コロナウイルス診断のための完全連結層を改良したトランスファー初期化を提案する。
畳み込みニューラルネットワーク(CNN)は画像分類において顕著な結果を得た。
しかし、画像認識アプリケーションの複雑さのため、ハイパフォーマンスモデルのトレーニングは非常に複雑で時間を要する。
一方、転送学習は比較的新しい学習手法であり、少ない計算で優れた性能を達成するために多くの分野に採用されている。
本研究では,PyTorch事前学習モデル (VGG19\_bn と WideResNet -101) を MNIST データセットに初期化として初めて適用し,完全連結層を修正した。
採用されたPyTorch事前訓練モデルは、以前はImageNetでトレーニングされていた。
提案したモデルはKaggleのノートブックで開発・検証され、ネットワークのトレーニング過程において膨大な計算時間を要さずに99.77%の精度に達した。
またSIIM-FISABIO-RSNA COVID-19検出データセットにも同様の手法を適用し,80.01%の精度で測定した。
対照的に、以前の方法は、高いパフォーマンスモデルに到達するためにトレーニングプロセス中に大きなコンパクト化時間を必要とする。
コードは以下のリンクで入手できる。 github.com/dipuk0506/SpinalNet
関連論文リスト
- Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
まず、ラベルのない大量のデータから共通特徴表現を学習できるように、自己スーパービジョンでモデルを事前訓練する。
その後、数ショットのデータセットMini-ImageNetで微調整を行い、限られたデータの下でモデルの精度と一般化能力を改善する。
論文 参考訳(メタデータ) (2024-11-19T01:01:56Z) - Effective pruning of web-scale datasets based on complexity of concept
clusters [48.125618324485195]
本稿では,大規模なマルチモーダルデータセットを抽出し,イメージネット上でCLIPスタイルのモデルを訓練する手法を提案する。
高品質なデータのより小さなセットでのトレーニングは、トレーニングコストを大幅に削減して、より高いパフォーマンスをもたらす可能性があることに気付きました。
我々は38の評価タスクにおいて、新しい最先端のImagehttps://info.arxiv.org/help/prep#commentsネットゼロショット精度と競合平均ゼロショット精度を実現する。
論文 参考訳(メタデータ) (2024-01-09T14:32:24Z) - Dataset Quantization [72.61936019738076]
大規模データセットを小さなサブセットに圧縮する新しいフレームワークであるデータセット量子化(DQ)を提案する。
DQは、ImageNet-1kのような大規模データセットを最先端圧縮比で蒸留する最初の方法である。
論文 参考訳(メタデータ) (2023-08-21T07:24:29Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
本稿では視覚バックボーン(例えば視覚変換器)の効率的なトレーニングのための新しいカリキュラム学習手法を提案する。
オフザシェルフ方式として、様々な人気モデルのウォールタイムトレーニングコストを、精度を犠牲にすることなく、ImageNet-1K/22Kで1.5倍に削減する。
論文 参考訳(メタデータ) (2022-11-17T17:38:55Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Unlearning Graph Classifiers with Limited Data Resources [39.29148804411811]
制御されたデータ削除は、データに敏感なWebアプリケーションのための機械学習モデルの重要機能になりつつある。
グラフニューラルネットワーク(GNN)の効率的な機械学習を実現する方法はまだほとんど知られていない。
我々の主な貢献は GST に基づく非線形近似グラフアンラーニング法である。
第2の貢献は、提案した未学習機構の計算複雑性の理論解析である。
第3のコントリビューションは広範囲なシミュレーションの結果であり、削除要求毎のGNNの完全再トレーニングと比較して、新しいGSTベースのアプローチは平均10.38倍のスピードアップを提供する。
論文 参考訳(メタデータ) (2022-11-06T20:46:50Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Targeted Gradient Descent: A Novel Method for Convolutional Neural
Networks Fine-tuning and Online-learning [9.011106198253053]
畳み込みニューラルネットワーク(ConvNet)は通常、同じ分布から引き出された画像を使用してトレーニングされ、テストされる。
ConvNetをさまざまなタスクに一般化するには、さまざまなタスクから描画されたイメージからなる完全なトレーニングデータセットが必要になることが多い。
本稿では,従来のタスクからデータを再検討することなく,事前学習したネットワークを新しいタスクに拡張可能な,新たな微調整手法であるTGDを提案する。
論文 参考訳(メタデータ) (2021-09-29T21:22:09Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
本稿では,高密度モデルの事前学習を伴わない新規なGrow-and-prune(GaP)手法を提案する。
実験により、そのようなモデルは様々なタスクにおいて80%の間隔で高度に最適化された高密度モデルの品質に適合または打ち勝つことができることが示された。
論文 参考訳(メタデータ) (2021-06-18T01:03:13Z) - Question Type Classification Methods Comparison [0.0]
本稿では、ロジスティック回帰、畳み込みニューラルネットワーク(CNN)、Long Short-Term Memory Network(LSTM)、Quasi-Recurrent Neural Networks(QRNN)といった問題分類タスクに対する最先端のアプローチの比較研究について述べる。
すべてのモデルは、事前訓練されたGLoVeワードの埋め込みを使用し、人間のラベル付きデータに基づいて訓練される。
最良の精度は5つの畳み込み層と、並列に積み重ねられたさまざまなカーネルサイズを持つCNNモデルを使用して達成され、その後に1つの完全に接続された層が続く。
論文 参考訳(メタデータ) (2020-01-03T00:16:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。