論文の概要: Documenting use cases in the affective computing domain using Unified
Modeling Language
- arxiv url: http://arxiv.org/abs/2209.09666v1
- Date: Mon, 19 Sep 2022 10:04:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 19:02:31.244120
- Title: Documenting use cases in the affective computing domain using Unified
Modeling Language
- Title(参考訳): Unified Modeling Language を用いた感情コンピューティング領域におけるユースケースの文書化
- Authors: Isabelle Hupont and Emilia Gomez
- Abstract要約: AIシステムの使用状況、スコープ、機能要件、リスクをカバーするユースケースドキュメントの標準的な方法論はありません。
我々のアプローチは、研究文献と最近提案された欧州のAI規制フレームワークに記録されたユースケース情報の評価に基づいています。
この評価から、私たちは過去20年間、主にソフトウェアエンジニアが使用してきたUML(Unified Modeling Language)を採用し、適応します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of the ethical impact of AI and the design of trustworthy systems
needs the analysis of the scenarios where AI systems are used, which is related
to the software engineering concept of "use case" and the "intended purpose"
legal term. However, there is no standard methodology for use case
documentation covering the context of use, scope, functional requirements and
risks of an AI system. In this work, we propose a novel documentation
methodology for AI use cases, with a special focus on the affective computing
domain. Our approach builds upon an assessment of use case information needs
documented in the research literature and the recently proposed European
regulatory framework for AI. From this assessment, we adopt and adapt the
Unified Modeling Language (UML), which has been used in the last two decades
mostly by software engineers. Each use case is then represented by an UML
diagram and a structured table, and we provide a set of examples illustrating
its application to several affective computing scenarios.
- Abstract(参考訳): aiの倫理的影響と信頼できるシステムの設計に関する研究には、aiシステムが使用されるシナリオの分析が必要である。
しかしながら、AIシステムの使用状況、スコープ、機能要件、リスクをカバーするユースケースドキュメントの標準的な方法論は存在しない。
本稿では,情緒的コンピューティング領域に注目した,aiユースケースのための新しい文書化手法を提案する。
我々のアプローチは、研究文献と最近提案された欧州のAI規制フレームワークに記録されたユースケース情報の評価に基づいています。
この評価から、私たちは過去20年間、主にソフトウェアエンジニアが使用してきたUML(Unified Modeling Language)を採用し、適応します。
次に、それぞれのユースケースをumlダイアグラムと構造化されたテーブルで表現します。
関連論文リスト
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - Implicit Personalization in Language Models: A Systematic Study [94.29756463158853]
インプリシトパーソナライゼーション (IP) は、入力プロンプト内の暗黙の手がかりからユーザの背景を推測する言語モデルの現象である。
この研究は、厳密な数学的定式化、多面的道徳的推論フレームワーク、そして一連の事例研究を通じて、IPを体系的に研究する。
論文 参考訳(メタデータ) (2024-05-23T17:18:46Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Use case cards: a use case reporting framework inspired by the European
AI Act [0.0]
ユースケースの文書化のための新しいフレームワークを提案する。
他のドキュメンテーションの方法論とは異なり、私たちはAIシステムの目的と運用に重点を置いています。
提案された枠組みは、関連するEU政策の専門家と科学者のチームを含む共同設計プロセスの結果である。
論文 参考訳(メタデータ) (2023-06-23T15:47:19Z) - Dynamic Documentation for AI Systems [0.0]
本稿では,AIシステムにおける現在のドキュメンテーションプロトコルの限界を示す。
我々は、AIシステムを理解し評価するための新しいパラダイムとして、動的ドキュメンテーションを議論する。
論文 参考訳(メタデータ) (2023-03-20T04:23:07Z) - Evaluating a Methodology for Increasing AI Transparency: A Case Study [8.265282762929509]
人工知能の潜在的な害に対する懸念が高まる中、社会はAIモデルとシステムがどのように作成され、使用されるかについて、より透明性を求めるようになった。
これらの懸念に対処するため、いくつかの取り組みが、モデル開発者が答えるべき質問を含むドキュメンテーションテンプレートを提案している。
多様なドキュメントコンシューマのニーズをカバーできるテンプレートはひとつもありません。
論文 参考訳(メタデータ) (2022-01-24T20:01:01Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z) - Why model why? Assessing the strengths and limitations of LIME [0.0]
本稿では,LIME(Local Interpretable Model-Agnostic Explanations) xAIフレームワークの有効性について検討する。
LIMEは、文献で見られる最も人気のあるモデルに依存しないフレームワークの1つである。
従来の性能評価手法を補うためにLIMEをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2020-11-30T21:08:07Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - A Methodology for Creating AI FactSheets [67.65802440158753]
本稿では、FactSheetsと呼ぶAIドキュメントの形式を作るための方法論について述べる。
方法論の各ステップの中で、検討すべき問題と探求すべき質問について説明する。
この方法論は、透明なAIドキュメントの採用を加速する。
論文 参考訳(メタデータ) (2020-06-24T15:08:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。