Reaction-limited quantum reaction-diffusion dynamics
- URL: http://arxiv.org/abs/2209.09784v3
- Date: Tue, 30 May 2023 15:12:37 GMT
- Title: Reaction-limited quantum reaction-diffusion dynamics
- Authors: Gabriele Perfetto, Federico Carollo, Juan P. Garrahan, and Igor
Lesanovsky
- Abstract summary: We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice.
By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference play a crucial role in these systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the quantum nonequilibrium dynamics of systems where fermionic
particles coherently hop on a one-dimensional lattice and are subject to
dissipative processes analogous to those of classical reaction-diffusion
models. Particles can either annihilate in pairs, $A+A \to \emptyset$,
coagulate upon contact, $A+A \to A$, and possibly also branch, $A \to A+A$. In
classical settings, the interplay between these processes and particle
diffusion leads to critical dynamics as well as to absorbing-state phase
transitions. Here, we analyze the impact of coherent hopping and of quantum
superposition, focusing on the so-called reaction-limited regime. Here, spatial
density fluctuations are quickly smoothed out due to fast hopping, which for
classical systems is described by a mean-field approach. By exploiting the
time-dependent generalized Gibbs ensemble method, we demonstrate that quantum
coherence and destructive interference play a crucial role in these systems and
are responsible for the emergence of locally protected dark states and
collective behavior beyond mean-field. This can manifest both at stationarity
and during the relaxation dynamics. Our results highlight fundamental
differences between classical nonequilibrium dynamics and their quantum
counterpart and show that quantum effects indeed change collective universal
behavior.
Related papers
- Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions [0.0]
Experimental progress in atomic, molecular, and optical platforms has stimulated strong and broad interest in quantum coherent dynamics.
This Report presents a systematic and organic review of recent advances in the field.
arXiv Detail & Related papers (2023-07-10T18:00:16Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Mean-field dynamics of open quantum systems with collective
operator-valued rates: validity and application [0.0]
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all coupling Hamiltonian.
We study the time evolution in the limit of infinitely large systems, and we demonstrate the exactness of the mean-field equations for the dynamics of average operators.
Our results allow for a rigorous and systematic investigation of the impact of quantum effects on paradigmatic classical models.
arXiv Detail & Related papers (2023-02-08T15:58:39Z) - Entanglement and thermokinetic uncertainty relations in coherent
mesoscopic transport [0.0]
Coherence leads to entanglement and even nonlocality in quantum systems.
Coherence may lead to a suppression of fluctuations, causing violations of thermo-kinetic uncertainty relations.
Our results provide guiding principles for the design of out-of-equilibrium devices that exhibit nonclassical behavior.
arXiv Detail & Related papers (2022-12-07T18:26:00Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Quantum Cherenkov transition of finite momentum Bose polarons [0.0]
We investigate the behavior of a finite-momentum impurity immersed in a weakly interacting Bose-Einstein condensate (BEC) of ultra-cold atoms.
We identify a transition in the far-from-equilibrium dynamics of the system after the attractive short-range impurity-boson interaction is quenched on.
The transition should be experimentally observable via a variety of common protocols in ultracold atomic systems.
arXiv Detail & Related papers (2021-09-25T02:02:32Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Localization of Rung Pairs in Hard-core Bose-Hubbard Ladder [13.46516066673]
We study the rung-pair localization of the Bose-Hubbard ladder model without quenched disorder.
In the hard-core limit, there exists a rung-pair localization both at the edges and in the bulk.
Our results reveal another interesting type of disorder-free localization related to a zero-energy flat band.
arXiv Detail & Related papers (2020-05-18T08:40:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.