Genetic algorithm for searching bipolar Single-Flux-Quantum pulse
sequences for qubit control
- URL: http://arxiv.org/abs/2209.09790v1
- Date: Tue, 20 Sep 2022 15:24:02 GMT
- Title: Genetic algorithm for searching bipolar Single-Flux-Quantum pulse
sequences for qubit control
- Authors: M.V. Bastrakova, D.S. Kulandin, T. Laptyeva, V.A. Vozhakov, A.V.
Liniov
- Abstract summary: We introduce a genetic algorithm for unipolar or bipolar SFQ control sequence search.
In the future we will apply the developed approach to study a system of two qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays most of superconducting quantum processors use charge qubits of a
transmon type. They require implementation of energy efficient qubit state
control scheme. A promising approach is the use of superconducting digital
circuits operating with single-flux-quantum (SFQ) pulses. The duration of SFQ
pulse control sequence is typically larger than that of conventional microwave
drive pulses but its length can be optimized for the system with known
parameters. Here we introduce a genetic algorithm for unipolar or bipolar SFQ
control sequence search that minimize qubit state leakage from the
computational subspace. The algorithm is also able to find a solution in the
form of a repeating subsequence in order to save memory on the control chip.
Its parallel implementation can find the appropriate sequence for arbitrary
system parameters from a practical range in a reasonable time. The algorithm is
illustrated by the example of the rotation gate around the axis by an angle
$\pi/2$ with fidelity over 99.99%. In this paper, we present the results for a
single-qubit system, but in the future we will apply the developed approach to
study a system of two qubits.
Related papers
- Optimal control in large open quantum systems: the case of transmon readout and reset [44.99833362998488]
We present a framework that combines the adjoint state method together with reverse-time back-propagation to solve prohibitively large open-system quantum control problems.
We apply this framework to optimize two inherently dissipative operations in superconducting qubits.
Our results show that, given a fixed set of system parameters, shaping the control pulses can yield 2x improvements in the fidelity and duration for both of these operations.
arXiv Detail & Related papers (2024-03-21T18:12:51Z) - Speeding up qubit control with bipolar single-flux-quantum pulse
sequences [0.0]
We introduce the bipolar SFQ pulse control based on ternary pulse sequences.
We show that the appropriate sequence can be found for arbitrary system parameters from the practical range.
The proposed bipolar SFQ control reduces a single qubit gate time by halve compared to nowadays unipolar SFQ technique.
arXiv Detail & Related papers (2023-10-17T14:44:02Z) - Robust Control of Single-Qubit Gates at the Quantum Speed Limit [0.0]
We investigate the underlying robust time-optimal control problem so as to make the best balance.
Based on the Taylor expansion of the system's unitary propagator, we formulate the design problem as the optimal control of an augmented finite-dimensional system.
Numerical simulations for single-qubit systems show that the obtained time-optimal control pulses can effectively suppress gate errors.
arXiv Detail & Related papers (2023-09-11T10:10:58Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Binary Optimal Control Of Single-Flux-Quantum Pulse Sequences [0.0]
We introduce a binary, relaxed gradient, trust-region method for optimizing pulse sequences for single flux quanta (SFQ) control of a quantum computer.
We present numerical results for the H and X gates, where the optimized pulse sequences give gate fidelity's better than $99.9%$, in $approx 25$ trust-region.
arXiv Detail & Related papers (2021-06-18T19:40:10Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.